Answer
Verified
492.6k+ views
Hint: First of all take LHS and convert the whole expression in terms of \[\sin \theta \] and \[\cos \theta \]. Then use \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] to find the value of \[\sin \theta \] by putting \[\cos \theta =\dfrac{12}{13}\]. Then put the values of \[\sin \theta \] and \[\cos \theta \] in LHS which is already in terms of \[\sin \theta \] and \[\cos \theta \] to find the required value.
We are given that \[\cos \theta =\dfrac{12}{13}\]. In this question, we have to show that \[\sin \theta \left( 1-\tan \theta \right)=\dfrac{35}{156}\].
First of all, let us consider the left-hand side (LHS) of the above equation as,
\[A=\sin \theta \left( 1-\tan \theta \right)\]
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. By applying this in the above expression, we get,
\[A=\sin \theta \left( 1-\dfrac{\sin \theta }{\cos \theta } \right)\]
By simplifying the above expression, we get,
\[A=\sin \theta \left( \dfrac{\cos \theta -\sin \theta }{\cos \theta } \right)\]
By taking \[\sin \theta \] inside the bracket in the above expression, we get,
\[A=\dfrac{\sin \theta \cos \theta -{{\sin }^{2}}\theta }{\cos \theta }....\left( i \right)\]
Now, we know that,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1....\left( ii \right)\]
Also, we are given that \[\cos \theta =\dfrac{12}{13}\].
By putting the value of \[\cos \theta \] in equation (ii), we get,
\[{{\sin }^{2}}\theta +{{\left( \dfrac{12}{13} \right)}^{2}}=1\]
By simplifying the above equation, we get,
\[{{\sin }^{2}}\theta =1-\dfrac{144}{169}\]
Or, \[{{\sin }^{2}}\theta =\dfrac{169-144}{169}\]
\[{{\sin }^{2}}\theta =\dfrac{25}{169}\]
By taking square root on both the sides in the above equation, we get,
\[\sin \theta =\sqrt{\dfrac{25}{169}}\]
As we know \[{{5}^{2}}=25\], therefore we get \[\sqrt{25}=5\]. Also, we know that \[{{13}^{2}}=169\], therefore we get \[\sqrt{169}=13\].
By putting the values of \[\sqrt{25}\] and \[\sqrt{169}\], we get,
\[\Rightarrow \sin \theta =\dfrac{5}{13}\]
Now, we put the value of \[\cos \theta =\dfrac{12}{13}\] and \[\sin \theta =\dfrac{5}{13}\] in equation (i), we get,
\[A=\dfrac{\left( \cos \theta \right)\left( \sin \theta \right)-\left( {{\sin }^{2}}\theta \right)}{\cos \theta }\]
\[\Rightarrow A=\dfrac{\left( \dfrac{12}{13} \right)\left( \dfrac{5}{13} \right)-{{\left( \dfrac{5}{13} \right)}^{2}}}{\dfrac{12}{13}}\]
By simplifying the above equation, we get,
\[\Rightarrow A=\dfrac{\dfrac{60}{169}-\dfrac{25}{169}}{\dfrac{12}{13}}\]
\[A=\dfrac{\left( 60-25 \right)}{169}\times \dfrac{13}{12}\]
Or, \[A=\dfrac{35}{13\times 13}\times \dfrac{13}{12}\]
By canceling the like terms, we get,
\[A=\dfrac{35}{13\times 12}\]
Or, \[A=\dfrac{35}{156}\left[ \text{RHS} \right]\]
Hence, we get LHS = RHS.
Therefore, we have shown that \[\sin \theta \left( 1-\tan \theta \right)=\dfrac{35}{156}\] for \[\cos \theta =\dfrac{12}{13}\].
Note: Here students must note that it is always better and reliable to convert the whole expression in terms of \[\sin \theta \] and \[\cos \theta \]. Also, while using the formula \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] , students often forget to take the square root at the end to find the values of \[\sin \theta \] and \[\cos \theta \] and get confused by putting the values of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] in place of \[\sin \theta \] and \[\cos \theta \]. So, this mistake must be avoided.
We are given that \[\cos \theta =\dfrac{12}{13}\]. In this question, we have to show that \[\sin \theta \left( 1-\tan \theta \right)=\dfrac{35}{156}\].
First of all, let us consider the left-hand side (LHS) of the above equation as,
\[A=\sin \theta \left( 1-\tan \theta \right)\]
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. By applying this in the above expression, we get,
\[A=\sin \theta \left( 1-\dfrac{\sin \theta }{\cos \theta } \right)\]
By simplifying the above expression, we get,
\[A=\sin \theta \left( \dfrac{\cos \theta -\sin \theta }{\cos \theta } \right)\]
By taking \[\sin \theta \] inside the bracket in the above expression, we get,
\[A=\dfrac{\sin \theta \cos \theta -{{\sin }^{2}}\theta }{\cos \theta }....\left( i \right)\]
Now, we know that,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1....\left( ii \right)\]
Also, we are given that \[\cos \theta =\dfrac{12}{13}\].
By putting the value of \[\cos \theta \] in equation (ii), we get,
\[{{\sin }^{2}}\theta +{{\left( \dfrac{12}{13} \right)}^{2}}=1\]
By simplifying the above equation, we get,
\[{{\sin }^{2}}\theta =1-\dfrac{144}{169}\]
Or, \[{{\sin }^{2}}\theta =\dfrac{169-144}{169}\]
\[{{\sin }^{2}}\theta =\dfrac{25}{169}\]
By taking square root on both the sides in the above equation, we get,
\[\sin \theta =\sqrt{\dfrac{25}{169}}\]
As we know \[{{5}^{2}}=25\], therefore we get \[\sqrt{25}=5\]. Also, we know that \[{{13}^{2}}=169\], therefore we get \[\sqrt{169}=13\].
By putting the values of \[\sqrt{25}\] and \[\sqrt{169}\], we get,
\[\Rightarrow \sin \theta =\dfrac{5}{13}\]
Now, we put the value of \[\cos \theta =\dfrac{12}{13}\] and \[\sin \theta =\dfrac{5}{13}\] in equation (i), we get,
\[A=\dfrac{\left( \cos \theta \right)\left( \sin \theta \right)-\left( {{\sin }^{2}}\theta \right)}{\cos \theta }\]
\[\Rightarrow A=\dfrac{\left( \dfrac{12}{13} \right)\left( \dfrac{5}{13} \right)-{{\left( \dfrac{5}{13} \right)}^{2}}}{\dfrac{12}{13}}\]
By simplifying the above equation, we get,
\[\Rightarrow A=\dfrac{\dfrac{60}{169}-\dfrac{25}{169}}{\dfrac{12}{13}}\]
\[A=\dfrac{\left( 60-25 \right)}{169}\times \dfrac{13}{12}\]
Or, \[A=\dfrac{35}{13\times 13}\times \dfrac{13}{12}\]
By canceling the like terms, we get,
\[A=\dfrac{35}{13\times 12}\]
Or, \[A=\dfrac{35}{156}\left[ \text{RHS} \right]\]
Hence, we get LHS = RHS.
Therefore, we have shown that \[\sin \theta \left( 1-\tan \theta \right)=\dfrac{35}{156}\] for \[\cos \theta =\dfrac{12}{13}\].
Note: Here students must note that it is always better and reliable to convert the whole expression in terms of \[\sin \theta \] and \[\cos \theta \]. Also, while using the formula \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] , students often forget to take the square root at the end to find the values of \[\sin \theta \] and \[\cos \theta \] and get confused by putting the values of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] in place of \[\sin \theta \] and \[\cos \theta \]. So, this mistake must be avoided.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE