If the vectors PQ=-3i+4j+4k and PR=5i-2j+4k are the sides of a $\vartriangle PQR$, then the length of the median through P is
A.$\sqrt {14} $
B.$\sqrt {15} $
C.$\sqrt {17} $
D.$\sqrt {18} $
E.$\sqrt {19} $
Last updated date: 18th Mar 2023
•
Total views: 306.3k
•
Views today: 2.86k
Answer
306.3k+ views
Hint: We are going to solve the given problem using the median formula in the triangle. Median through any vertex divides the opposite side into two equal parts.
Given, PQ=-3i+4j+4k and PR=5i-2j+4k in triangle PQR
The median through vertex P divides QR side into two equal parts.
Let D is the midpoint of QR, then PD will be the length of median through vertex P.
$ \Rightarrow \overrightarrow {PQ} + \overrightarrow {PR} = 2\overrightarrow {PD} $
Therefore, the length of the median through P is
PD$ = \frac{1}{2}\left| {PQ + PR} \right|$
PD$ = \frac{1}{2}\left| {2i + 2j + 8k} \right|$
PD$ = \frac{1}{2}\sqrt {4 + 4 + 64} = \frac{1}{2}\sqrt {72} = \sqrt {18} $
$\therefore $ The length of the median through P = $\sqrt {18} $
Note: Median of a triangle is a line segment joining a vertex to the midpoint of the opposite side thus bisecting that side. In a triangle while using vectors the sum of two sides is equal to one particular side. $ \Rightarrow \overrightarrow {PQ} + \overrightarrow {PR} = \overrightarrow {QR} $, If D is the midpoint of the side QR, then QR = 2QD = 2RD. After drawing a line from P to D, the $\vartriangle PQR$ divided into two triangles both have PD side as common. Let’s take $\vartriangle PQD$$(or\vartriangle PRD)$ to find the length of PD.$ \Rightarrow PQ + QD = PD$, We know that QD is half of QR. Then we can find PD i.e., length of median through P.
Given, PQ=-3i+4j+4k and PR=5i-2j+4k in triangle PQR
The median through vertex P divides QR side into two equal parts.
Let D is the midpoint of QR, then PD will be the length of median through vertex P.
$ \Rightarrow \overrightarrow {PQ} + \overrightarrow {PR} = 2\overrightarrow {PD} $
Therefore, the length of the median through P is
PD$ = \frac{1}{2}\left| {PQ + PR} \right|$
PD$ = \frac{1}{2}\left| {2i + 2j + 8k} \right|$
PD$ = \frac{1}{2}\sqrt {4 + 4 + 64} = \frac{1}{2}\sqrt {72} = \sqrt {18} $
$\therefore $ The length of the median through P = $\sqrt {18} $
Note: Median of a triangle is a line segment joining a vertex to the midpoint of the opposite side thus bisecting that side. In a triangle while using vectors the sum of two sides is equal to one particular side. $ \Rightarrow \overrightarrow {PQ} + \overrightarrow {PR} = \overrightarrow {QR} $, If D is the midpoint of the side QR, then QR = 2QD = 2RD. After drawing a line from P to D, the $\vartriangle PQR$ divided into two triangles both have PD side as common. Let’s take $\vartriangle PQD$$(or\vartriangle PRD)$ to find the length of PD.$ \Rightarrow PQ + QD = PD$, We know that QD is half of QR. Then we can find PD i.e., length of median through P.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
