
If the value of $A + B = 45^\circ $, Prove that $\left( {1 + \tan A} \right)\left( {1 + \tan B} \right) = 2$.
Answer
621.3k+ views
Hint: We need to know the basic trigonometric formula and basic trigonometric function values to solve this problem.
Complete step-by-step answer:
Given $A + B = 45^\circ $
Applying tan function on both sides of the above equation
$ \Rightarrow \tan (A + B) = \tan 45^\circ $
$ \Rightarrow \tan (A + B) = 1\;\left[ {\because \tan 45^\circ = 1} \right]$
Using tan (A + B) formula, we can write
$ \Rightarrow \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = 1$
$ \Rightarrow \tan A + \tan B = 1 - \tan A\tan B$ ... (1)
We need to prove $\left( {1 + \tan A} \right)\left( {1 + \tan B} \right) = 2$
Taking LHS of the above equation
$ \Rightarrow 1 + \tan A + \tan B + \tan A\tan B$
Substituting the equation (1) in the above equation, we get
$ \Rightarrow 1 + \left( {1 - \tan A\tan B} \right) + \tan A\tan B$
$ \Rightarrow 1 + 1$
=2
Hence proved.
$\therefore \left( {1 + \tan A} \right)\left( {1 + \tan B} \right) = 2$
Note: We used the basic trigonometric value $\tan 45^\circ = 1$ and formula of $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$.
Complete step-by-step answer:
Given $A + B = 45^\circ $
Applying tan function on both sides of the above equation
$ \Rightarrow \tan (A + B) = \tan 45^\circ $
$ \Rightarrow \tan (A + B) = 1\;\left[ {\because \tan 45^\circ = 1} \right]$
Using tan (A + B) formula, we can write
$ \Rightarrow \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = 1$
$ \Rightarrow \tan A + \tan B = 1 - \tan A\tan B$ ... (1)
We need to prove $\left( {1 + \tan A} \right)\left( {1 + \tan B} \right) = 2$
Taking LHS of the above equation
$ \Rightarrow 1 + \tan A + \tan B + \tan A\tan B$
Substituting the equation (1) in the above equation, we get
$ \Rightarrow 1 + \left( {1 - \tan A\tan B} \right) + \tan A\tan B$
$ \Rightarrow 1 + 1$
=2
Hence proved.
$\therefore \left( {1 + \tan A} \right)\left( {1 + \tan B} \right) = 2$
Note: We used the basic trigonometric value $\tan 45^\circ = 1$ and formula of $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

