Answer
Verified
494.1k+ views
Hint: Use the trigonometric identity related to tan that is $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ . Use the given condition to find the value of $\theta +\phi $ and find out the required relation.
As per the given conditions, we have
${{\tan }^{3}}\theta =\tan \phi ..........(i)$
$\tan 2\theta =2\tan \alpha ........(ii)$
Now consider the expression,
$\tan (\theta +\phi )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi }$
Now substituting the value from equation (i), we get
$\tan (\theta +\phi )=\dfrac{\tan \theta +{{\tan }^{3}}\theta }{1-\tan \theta {{\tan }^{3}}\theta }$
Taking out the common term from the numerator, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{1-{{\tan }^{4}}\theta }$
Now we know, ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$, using this identity the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{\left( 1-{{\tan }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}$
Multiplying and dividing by ‘2’, we get
$\tan (\theta +\phi )=\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}\times \dfrac{1}{2}$
Now we know, $\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}=\tan 2\theta $, substituting this in above expression, we get
$\tan (\theta +\phi )=\tan 2\theta \times \dfrac{1}{2}$
Substituting value from equation (ii), we get
$\tan (\theta +\phi )=2\tan \alpha \times \dfrac{1}{2}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\tan \alpha ..........(iii)$
Now consider the expression,
$\tan (n\pi +\alpha )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (n\pi +\alpha )=\dfrac{\tan n\pi +\tan \alpha }{1-\tan n\pi \tan \alpha }$
Now we know, $\tan n\pi =0$, substituting this value in above expression, we get
$\tan (n\pi +\alpha )=\dfrac{0+\tan \alpha }{1-(0)\tan \alpha }=\tan \alpha $
Substituting this value in equation (iii), we get
$\begin{align}
& \tan (\theta +\phi )=\tan \left( n\pi +\alpha \right) \\
& \Rightarrow \theta +\phi =n\pi +\alpha \\
\end{align}$
Hence proved
Note: Sometimes students get confused after the step $\tan (\theta +\phi )=\tan \alpha $ if they don’t remember $\tan n\pi =0$.
So it’s very important to remember important identities.
One more approach is to find the value of $\tan (\theta +\phi )$ in terms of $\theta $. Next find the value of $\tan \left( n\pi +\alpha \right)$ in terms of $\theta $ and then equate.
As per the given conditions, we have
${{\tan }^{3}}\theta =\tan \phi ..........(i)$
$\tan 2\theta =2\tan \alpha ........(ii)$
Now consider the expression,
$\tan (\theta +\phi )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi }$
Now substituting the value from equation (i), we get
$\tan (\theta +\phi )=\dfrac{\tan \theta +{{\tan }^{3}}\theta }{1-\tan \theta {{\tan }^{3}}\theta }$
Taking out the common term from the numerator, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{1-{{\tan }^{4}}\theta }$
Now we know, ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$, using this identity the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{\left( 1-{{\tan }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}$
Multiplying and dividing by ‘2’, we get
$\tan (\theta +\phi )=\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}\times \dfrac{1}{2}$
Now we know, $\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}=\tan 2\theta $, substituting this in above expression, we get
$\tan (\theta +\phi )=\tan 2\theta \times \dfrac{1}{2}$
Substituting value from equation (ii), we get
$\tan (\theta +\phi )=2\tan \alpha \times \dfrac{1}{2}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\tan \alpha ..........(iii)$
Now consider the expression,
$\tan (n\pi +\alpha )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (n\pi +\alpha )=\dfrac{\tan n\pi +\tan \alpha }{1-\tan n\pi \tan \alpha }$
Now we know, $\tan n\pi =0$, substituting this value in above expression, we get
$\tan (n\pi +\alpha )=\dfrac{0+\tan \alpha }{1-(0)\tan \alpha }=\tan \alpha $
Substituting this value in equation (iii), we get
$\begin{align}
& \tan (\theta +\phi )=\tan \left( n\pi +\alpha \right) \\
& \Rightarrow \theta +\phi =n\pi +\alpha \\
\end{align}$
Hence proved
Note: Sometimes students get confused after the step $\tan (\theta +\phi )=\tan \alpha $ if they don’t remember $\tan n\pi =0$.
So it’s very important to remember important identities.
One more approach is to find the value of $\tan (\theta +\phi )$ in terms of $\theta $. Next find the value of $\tan \left( n\pi +\alpha \right)$ in terms of $\theta $ and then equate.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life