
If the trigonometric equations given as ${{\tan }^{3}}\theta =\tan \phi $ and $\tan 2\theta =2\tan \alpha $, prove that $\theta +\phi =n\pi +\alpha $.
Answer
607.5k+ views
Hint: Use the trigonometric identity related to tan that is $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ . Use the given condition to find the value of $\theta +\phi $ and find out the required relation.
As per the given conditions, we have
${{\tan }^{3}}\theta =\tan \phi ..........(i)$
$\tan 2\theta =2\tan \alpha ........(ii)$
Now consider the expression,
$\tan (\theta +\phi )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi }$
Now substituting the value from equation (i), we get
$\tan (\theta +\phi )=\dfrac{\tan \theta +{{\tan }^{3}}\theta }{1-\tan \theta {{\tan }^{3}}\theta }$
Taking out the common term from the numerator, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{1-{{\tan }^{4}}\theta }$
Now we know, ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$, using this identity the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{\left( 1-{{\tan }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}$
Multiplying and dividing by ‘2’, we get
$\tan (\theta +\phi )=\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}\times \dfrac{1}{2}$
Now we know, $\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}=\tan 2\theta $, substituting this in above expression, we get
$\tan (\theta +\phi )=\tan 2\theta \times \dfrac{1}{2}$
Substituting value from equation (ii), we get
$\tan (\theta +\phi )=2\tan \alpha \times \dfrac{1}{2}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\tan \alpha ..........(iii)$
Now consider the expression,
$\tan (n\pi +\alpha )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (n\pi +\alpha )=\dfrac{\tan n\pi +\tan \alpha }{1-\tan n\pi \tan \alpha }$
Now we know, $\tan n\pi =0$, substituting this value in above expression, we get
$\tan (n\pi +\alpha )=\dfrac{0+\tan \alpha }{1-(0)\tan \alpha }=\tan \alpha $
Substituting this value in equation (iii), we get
$\begin{align}
& \tan (\theta +\phi )=\tan \left( n\pi +\alpha \right) \\
& \Rightarrow \theta +\phi =n\pi +\alpha \\
\end{align}$
Hence proved
Note: Sometimes students get confused after the step $\tan (\theta +\phi )=\tan \alpha $ if they don’t remember $\tan n\pi =0$.
So it’s very important to remember important identities.
One more approach is to find the value of $\tan (\theta +\phi )$ in terms of $\theta $. Next find the value of $\tan \left( n\pi +\alpha \right)$ in terms of $\theta $ and then equate.
As per the given conditions, we have
${{\tan }^{3}}\theta =\tan \phi ..........(i)$
$\tan 2\theta =2\tan \alpha ........(ii)$
Now consider the expression,
$\tan (\theta +\phi )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi }$
Now substituting the value from equation (i), we get
$\tan (\theta +\phi )=\dfrac{\tan \theta +{{\tan }^{3}}\theta }{1-\tan \theta {{\tan }^{3}}\theta }$
Taking out the common term from the numerator, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{1-{{\tan }^{4}}\theta }$
Now we know, ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$, using this identity the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{\left( 1-{{\tan }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}$
Multiplying and dividing by ‘2’, we get
$\tan (\theta +\phi )=\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}\times \dfrac{1}{2}$
Now we know, $\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}=\tan 2\theta $, substituting this in above expression, we get
$\tan (\theta +\phi )=\tan 2\theta \times \dfrac{1}{2}$
Substituting value from equation (ii), we get
$\tan (\theta +\phi )=2\tan \alpha \times \dfrac{1}{2}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\tan \alpha ..........(iii)$
Now consider the expression,
$\tan (n\pi +\alpha )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (n\pi +\alpha )=\dfrac{\tan n\pi +\tan \alpha }{1-\tan n\pi \tan \alpha }$
Now we know, $\tan n\pi =0$, substituting this value in above expression, we get
$\tan (n\pi +\alpha )=\dfrac{0+\tan \alpha }{1-(0)\tan \alpha }=\tan \alpha $
Substituting this value in equation (iii), we get
$\begin{align}
& \tan (\theta +\phi )=\tan \left( n\pi +\alpha \right) \\
& \Rightarrow \theta +\phi =n\pi +\alpha \\
\end{align}$
Hence proved
Note: Sometimes students get confused after the step $\tan (\theta +\phi )=\tan \alpha $ if they don’t remember $\tan n\pi =0$.
So it’s very important to remember important identities.
One more approach is to find the value of $\tan (\theta +\phi )$ in terms of $\theta $. Next find the value of $\tan \left( n\pi +\alpha \right)$ in terms of $\theta $ and then equate.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

