
If the sum of the first n terms ${{S}_{n}}$ of an A.P. is given by ${{S}_{n}}=3{{n}^{2}}-4n$, then find the ${{n}^{th}}$ term.
Answer
583.2k+ views
Hint: To solve this question, firstly we will find the values of ${{S}_{1}}$ and ${{S}_{2}}$ by using relation given in question, which is ${{S}_{n}}=3{{n}^{2}}-4n$. After that we will find the values of first two terms of an A.P by solving the values obtained of ${{S}_{1}}$ and ${{S}_{2}}$ as ${{S}_{1}}={{a}_{1}}$ and ${{S}_{2}}={{a}_{1}}+{{a}_{2}}$. Then, we will find the common difference d, and then, we will substitute all the values in the formula of ${{n}^{th}}$ term of an A.P, to get the value of ${{n}^{th}}$ term.
Complete step-by-step solution
Let, terms of A.P be ${{a}_{1}},{{a}_{2}},{{a}_{3}},.......,{{a}_{n}}$
Now, in question it is given that the sum of first n terms of an A.P. is given by
${{S}_{n}}=3{{n}^{2}}-4n$
So, if we substitute $n = 1$, we will get the value of ${{S}_{1}}$, which will be equals to the first term of an A.P which is ${{a}_{1}}$.
Then, ${{S}_{1}}=3{{(1)}^{2}}-4(1)$
${{S}_{1}}=-1$
Substituting n = 2, we will get value of ${{S}_{2}}$, which will be equals to sum of first two terms which is ${{a}_{1}}+{{a}_{2}}$
Then, ${{S}_{2}}=3{{(2)}^{2}}-4(2)$
${{S}_{1}}=4$
Also, we know that, ${{S}_{n}}-{{S}_{n-1}}={{a}_{n}}$
So, ${{S}_{2}}-{{S}_{1}}={{a}_{2}}$
$\Rightarrow {{a}_{2}}=4-(-1)$
$\Rightarrow {{a}_{2}}=5$
So, A.P will be $-1, 5, ………$
Then, first term a = -1 and common difference $d = 5 – (-1) = 6$
So, we know that ${{n}^{th}}$ term of an A.P is given by formula,
${{a}_{n}}=a+(n-1)d$
Putting values of a = -1 and d = 6, we get
${{a}_{n}}=-1+(n-1)6$
On simplifying, we get
${{a}_{n}}=-1+6n-6$
On solving, we get
${{a}_{n}}=6n-7$
Hence, ${{n}^{th}}$ term of an A.P is equal to $6n – 7.$
Note: Always remember that ${{S}_{n}}-{{S}_{n-1}}={{a}_{n}}$, ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+(n-1)d \right]$ and ${{n}^{th}}$ term of an A.P is given by formula,${{a}_{n}}=a+(n-1)d$, where d is common difference between consecutive terms and a is first term of an A.P. While solving the question, always take care of signs of the term and try not to make any calculation mistakes.
Complete step-by-step solution
Let, terms of A.P be ${{a}_{1}},{{a}_{2}},{{a}_{3}},.......,{{a}_{n}}$
Now, in question it is given that the sum of first n terms of an A.P. is given by
${{S}_{n}}=3{{n}^{2}}-4n$
So, if we substitute $n = 1$, we will get the value of ${{S}_{1}}$, which will be equals to the first term of an A.P which is ${{a}_{1}}$.
Then, ${{S}_{1}}=3{{(1)}^{2}}-4(1)$
${{S}_{1}}=-1$
Substituting n = 2, we will get value of ${{S}_{2}}$, which will be equals to sum of first two terms which is ${{a}_{1}}+{{a}_{2}}$
Then, ${{S}_{2}}=3{{(2)}^{2}}-4(2)$
${{S}_{1}}=4$
Also, we know that, ${{S}_{n}}-{{S}_{n-1}}={{a}_{n}}$
So, ${{S}_{2}}-{{S}_{1}}={{a}_{2}}$
$\Rightarrow {{a}_{2}}=4-(-1)$
$\Rightarrow {{a}_{2}}=5$
So, A.P will be $-1, 5, ………$
Then, first term a = -1 and common difference $d = 5 – (-1) = 6$
So, we know that ${{n}^{th}}$ term of an A.P is given by formula,
${{a}_{n}}=a+(n-1)d$
Putting values of a = -1 and d = 6, we get
${{a}_{n}}=-1+(n-1)6$
On simplifying, we get
${{a}_{n}}=-1+6n-6$
On solving, we get
${{a}_{n}}=6n-7$
Hence, ${{n}^{th}}$ term of an A.P is equal to $6n – 7.$
Note: Always remember that ${{S}_{n}}-{{S}_{n-1}}={{a}_{n}}$, ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+(n-1)d \right]$ and ${{n}^{th}}$ term of an A.P is given by formula,${{a}_{n}}=a+(n-1)d$, where d is common difference between consecutive terms and a is first term of an A.P. While solving the question, always take care of signs of the term and try not to make any calculation mistakes.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

