
If the side of a cube is increased by 50%, then what percent increase will be in the area of the vertical faces of the cube?
A. 125%
B. 150%
C. 100%
D. 50%
Answer
604.5k+ views
Hint: We have to find out the percent increase in the area of the faces of the cube, so we will make use of the formula of the area of the cube and try to solve this.
Complete step-by-step answer:
Let us consider the side of the cube =a
Given that the side of a cube is increased by 50%
So, the side a is increased by 50%
So, the increase would be=$\dfrac{{50}}{{100}}a = \dfrac{1}{2}a = 0.5a$
So, from this we can write, the new side=length of the original side+ increase in length
The new side = 1+0.5a=1.5a
Now, the area of the 4 walls(old)=$4{a^2}$
Area of the 4 walls(new)=$4 \times {(1.5a)^2} = 4 \times 2.25{a^2} = 9{a^2}$
Increase in the area of the wall=$9{a^2} - 4{a^2} = 5{a^2}$
Now, the % increase in the area of the wall=$\dfrac{{increase{\text{ in the area}}}}{{original{\text{ area}}}} \times 100 = \dfrac{{5{a^2}}}{{4{a^2}}} \times 100 = \dfrac{5}{4} \times 100 = 5 \times 25$ =125
So, from this we can say that the % increase in the area=125%
So, option A is the correct answer.
Note: When solving these type of questions, make sure to first find out the new area after the side of the cube has been increased and then calculate the percentage increase with respect to the original area of the side.
Complete step-by-step answer:
Let us consider the side of the cube =a
Given that the side of a cube is increased by 50%
So, the side a is increased by 50%
So, the increase would be=$\dfrac{{50}}{{100}}a = \dfrac{1}{2}a = 0.5a$
So, from this we can write, the new side=length of the original side+ increase in length
The new side = 1+0.5a=1.5a
Now, the area of the 4 walls(old)=$4{a^2}$
Area of the 4 walls(new)=$4 \times {(1.5a)^2} = 4 \times 2.25{a^2} = 9{a^2}$
Increase in the area of the wall=$9{a^2} - 4{a^2} = 5{a^2}$
Now, the % increase in the area of the wall=$\dfrac{{increase{\text{ in the area}}}}{{original{\text{ area}}}} \times 100 = \dfrac{{5{a^2}}}{{4{a^2}}} \times 100 = \dfrac{5}{4} \times 100 = 5 \times 25$ =125
So, from this we can say that the % increase in the area=125%
So, option A is the correct answer.
Note: When solving these type of questions, make sure to first find out the new area after the side of the cube has been increased and then calculate the percentage increase with respect to the original area of the side.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

