
If the roots of the quadratic equation $a{{x}^{2}}+bx+c=0\text{ are $\alpha \text{ and }\beta $ and }3{{b}^{2}}=16ac$ , then
A) $\alpha =4\beta \text{ or }\beta =4\alpha $
B) $\alpha =-4\beta \text{ or }\beta =-4\alpha $
C) $\alpha =3\beta \text{ or }\beta =3\alpha $
D) $\alpha =-3\beta \text{ or }\beta =-3\alpha $
Answer
609.6k+ views
Hint: If we have any quadratic $A{{x}^{2}}+Bx+C=0$ with roots ${{x}_{1}}\And {{x}_{2}}$ , then we have
${{x}_{1}}+{{x}_{2}}=\dfrac{-B}{A}\And {{x}_{1}}{{x}_{2}}=\dfrac{C}{A}$
Use the given relation to solve the given equation.
We have given that $\left( \alpha ,\beta \right)$ are roots of the quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Another information given here is
$3{{b}^{2}}=16ac...........\left( 1 \right)$
Now, $\left( \alpha ,\beta \right)$ are roots of quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Hence, relation between roots and coefficients of any quadratic is given as
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{-}\left( \text{coefficient of }x \right)}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Therefore, we have quadratic equation as;
$a{{x}^{2}}+bx+c=0\text{ }$
Sum of roots $=\alpha +\beta =\dfrac{-b}{a}...................\left( 2 \right)$
Product of roots $=\alpha \beta =\dfrac{c}{a}.....................\left( 3 \right)$
Now, from equation (1), we have
$3{{b}^{2}}=16ac$
Putting value of ‘b’ from equation (2) i.e. $-a\left( \alpha +\beta \right)$ in the above equation, we get;
$3{{a}^{2}}{{\left( \alpha +\beta \right)}^{2}}=16ac$
Transferring ${{a}^{2}}$ to another side, we get;
$3{{\left( \alpha +\beta \right)}^{2}}=\dfrac{16ac}{{{a}^{2}}}=16\dfrac{c}{a}$
From equation (3), we can replace $'\dfrac{c}{a}'$ by $\alpha \text{ }\beta $ from above equation;
$3{{\left( \alpha +\beta \right)}^{2}}=16\alpha \beta $
We have identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab,$ applying it with the above equation we get;
\[\begin{align}
& 3\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \right)=16\alpha \beta \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}+6\alpha \beta -16\alpha \beta =0 \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0 \\
\end{align}\]
Dividing whole equation by ‘${{\alpha }^{2}}$’, we get;
$3+3{{\left( \dfrac{\beta }{\alpha } \right)}^{2}}-10\left( \dfrac{\beta }{\alpha } \right)=0$
Let $\dfrac{\beta }{\alpha }='t'$ we can write above equation as;
$3{{t}^{2}}-10t+3=0$ …………………(4)
Now, splitting the middle term to get summation of 10 and product ‘9’, we get;
$\begin{align}
& 3{{t}^{2}}-9t-t+3=0 \\
& 3t\left( t-3 \right)-1\left( t-3 \right)=0 \\
& \left( t-3 \right)\left( t-\dfrac{1}{3} \right)=0 \\
& t=\dfrac{1}{3},t=3 \\
\end{align}$
As, we have suppose $t\ \text{as}\ \dfrac{\beta }{\alpha }$ , Hence we get;
$\begin{align}
& \dfrac{\beta }{\alpha }=\dfrac{1}{3}\ \And \dfrac{\beta }{\alpha }=3 \\
& or \\
& 3\beta =\alpha ,\beta =3\alpha \\
\end{align}$
Therefore, Option (C) is the correct answer.
Note: One can go wrong while factoring $3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0$. To minimize the confusion, divide the whole equation by ${{\alpha }^{2}}\ \And \ {{\beta }^{2}}$.
We can factorize $3{{\alpha }^{2}}-10\alpha \beta +3{{\beta }^{2}}=0$ as splitting middle term to $-9\alpha \beta \ and\ -\alpha \beta $ as
$\begin{align}
& 3{{\alpha }^{2}}-9\alpha \beta -\alpha \beta +3{{\beta }^{2}}=0 \\
& 3\alpha \left( \alpha -3\beta \right)-\beta \left( \alpha -3\beta \right)=0 \\
& \left( \alpha -3\beta \right)\left( 3\alpha -\beta \right)=0 \\
\end{align}$
Hence, we get $\alpha =3\beta \ or\ \beta =3\alpha $.
One can go wrong while writing the sum of roots and product of roots. He/she may write
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
& \text{Product of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
\end{align}$
Which is wrong. Hence, we need to apply the above relations very carefully. Correct relation is given as;
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
${{x}_{1}}+{{x}_{2}}=\dfrac{-B}{A}\And {{x}_{1}}{{x}_{2}}=\dfrac{C}{A}$
Use the given relation to solve the given equation.
We have given that $\left( \alpha ,\beta \right)$ are roots of the quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Another information given here is
$3{{b}^{2}}=16ac...........\left( 1 \right)$
Now, $\left( \alpha ,\beta \right)$ are roots of quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Hence, relation between roots and coefficients of any quadratic is given as
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{-}\left( \text{coefficient of }x \right)}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Therefore, we have quadratic equation as;
$a{{x}^{2}}+bx+c=0\text{ }$
Sum of roots $=\alpha +\beta =\dfrac{-b}{a}...................\left( 2 \right)$
Product of roots $=\alpha \beta =\dfrac{c}{a}.....................\left( 3 \right)$
Now, from equation (1), we have
$3{{b}^{2}}=16ac$
Putting value of ‘b’ from equation (2) i.e. $-a\left( \alpha +\beta \right)$ in the above equation, we get;
$3{{a}^{2}}{{\left( \alpha +\beta \right)}^{2}}=16ac$
Transferring ${{a}^{2}}$ to another side, we get;
$3{{\left( \alpha +\beta \right)}^{2}}=\dfrac{16ac}{{{a}^{2}}}=16\dfrac{c}{a}$
From equation (3), we can replace $'\dfrac{c}{a}'$ by $\alpha \text{ }\beta $ from above equation;
$3{{\left( \alpha +\beta \right)}^{2}}=16\alpha \beta $
We have identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab,$ applying it with the above equation we get;
\[\begin{align}
& 3\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \right)=16\alpha \beta \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}+6\alpha \beta -16\alpha \beta =0 \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0 \\
\end{align}\]
Dividing whole equation by ‘${{\alpha }^{2}}$’, we get;
$3+3{{\left( \dfrac{\beta }{\alpha } \right)}^{2}}-10\left( \dfrac{\beta }{\alpha } \right)=0$
Let $\dfrac{\beta }{\alpha }='t'$ we can write above equation as;
$3{{t}^{2}}-10t+3=0$ …………………(4)
Now, splitting the middle term to get summation of 10 and product ‘9’, we get;
$\begin{align}
& 3{{t}^{2}}-9t-t+3=0 \\
& 3t\left( t-3 \right)-1\left( t-3 \right)=0 \\
& \left( t-3 \right)\left( t-\dfrac{1}{3} \right)=0 \\
& t=\dfrac{1}{3},t=3 \\
\end{align}$
As, we have suppose $t\ \text{as}\ \dfrac{\beta }{\alpha }$ , Hence we get;
$\begin{align}
& \dfrac{\beta }{\alpha }=\dfrac{1}{3}\ \And \dfrac{\beta }{\alpha }=3 \\
& or \\
& 3\beta =\alpha ,\beta =3\alpha \\
\end{align}$
Therefore, Option (C) is the correct answer.
Note: One can go wrong while factoring $3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0$. To minimize the confusion, divide the whole equation by ${{\alpha }^{2}}\ \And \ {{\beta }^{2}}$.
We can factorize $3{{\alpha }^{2}}-10\alpha \beta +3{{\beta }^{2}}=0$ as splitting middle term to $-9\alpha \beta \ and\ -\alpha \beta $ as
$\begin{align}
& 3{{\alpha }^{2}}-9\alpha \beta -\alpha \beta +3{{\beta }^{2}}=0 \\
& 3\alpha \left( \alpha -3\beta \right)-\beta \left( \alpha -3\beta \right)=0 \\
& \left( \alpha -3\beta \right)\left( 3\alpha -\beta \right)=0 \\
\end{align}$
Hence, we get $\alpha =3\beta \ or\ \beta =3\alpha $.
One can go wrong while writing the sum of roots and product of roots. He/she may write
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
& \text{Product of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
\end{align}$
Which is wrong. Hence, we need to apply the above relations very carefully. Correct relation is given as;
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

