Answer
Verified
495.6k+ views
Hint: If we have any quadratic $A{{x}^{2}}+Bx+C=0$ with roots ${{x}_{1}}\And {{x}_{2}}$ , then we have
${{x}_{1}}+{{x}_{2}}=\dfrac{-B}{A}\And {{x}_{1}}{{x}_{2}}=\dfrac{C}{A}$
Use the given relation to solve the given equation.
We have given that $\left( \alpha ,\beta \right)$ are roots of the quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Another information given here is
$3{{b}^{2}}=16ac...........\left( 1 \right)$
Now, $\left( \alpha ,\beta \right)$ are roots of quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Hence, relation between roots and coefficients of any quadratic is given as
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{-}\left( \text{coefficient of }x \right)}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Therefore, we have quadratic equation as;
$a{{x}^{2}}+bx+c=0\text{ }$
Sum of roots $=\alpha +\beta =\dfrac{-b}{a}...................\left( 2 \right)$
Product of roots $=\alpha \beta =\dfrac{c}{a}.....................\left( 3 \right)$
Now, from equation (1), we have
$3{{b}^{2}}=16ac$
Putting value of ‘b’ from equation (2) i.e. $-a\left( \alpha +\beta \right)$ in the above equation, we get;
$3{{a}^{2}}{{\left( \alpha +\beta \right)}^{2}}=16ac$
Transferring ${{a}^{2}}$ to another side, we get;
$3{{\left( \alpha +\beta \right)}^{2}}=\dfrac{16ac}{{{a}^{2}}}=16\dfrac{c}{a}$
From equation (3), we can replace $'\dfrac{c}{a}'$ by $\alpha \text{ }\beta $ from above equation;
$3{{\left( \alpha +\beta \right)}^{2}}=16\alpha \beta $
We have identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab,$ applying it with the above equation we get;
\[\begin{align}
& 3\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \right)=16\alpha \beta \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}+6\alpha \beta -16\alpha \beta =0 \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0 \\
\end{align}\]
Dividing whole equation by ‘${{\alpha }^{2}}$’, we get;
$3+3{{\left( \dfrac{\beta }{\alpha } \right)}^{2}}-10\left( \dfrac{\beta }{\alpha } \right)=0$
Let $\dfrac{\beta }{\alpha }='t'$ we can write above equation as;
$3{{t}^{2}}-10t+3=0$ …………………(4)
Now, splitting the middle term to get summation of 10 and product ‘9’, we get;
$\begin{align}
& 3{{t}^{2}}-9t-t+3=0 \\
& 3t\left( t-3 \right)-1\left( t-3 \right)=0 \\
& \left( t-3 \right)\left( t-\dfrac{1}{3} \right)=0 \\
& t=\dfrac{1}{3},t=3 \\
\end{align}$
As, we have suppose $t\ \text{as}\ \dfrac{\beta }{\alpha }$ , Hence we get;
$\begin{align}
& \dfrac{\beta }{\alpha }=\dfrac{1}{3}\ \And \dfrac{\beta }{\alpha }=3 \\
& or \\
& 3\beta =\alpha ,\beta =3\alpha \\
\end{align}$
Therefore, Option (C) is the correct answer.
Note: One can go wrong while factoring $3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0$. To minimize the confusion, divide the whole equation by ${{\alpha }^{2}}\ \And \ {{\beta }^{2}}$.
We can factorize $3{{\alpha }^{2}}-10\alpha \beta +3{{\beta }^{2}}=0$ as splitting middle term to $-9\alpha \beta \ and\ -\alpha \beta $ as
$\begin{align}
& 3{{\alpha }^{2}}-9\alpha \beta -\alpha \beta +3{{\beta }^{2}}=0 \\
& 3\alpha \left( \alpha -3\beta \right)-\beta \left( \alpha -3\beta \right)=0 \\
& \left( \alpha -3\beta \right)\left( 3\alpha -\beta \right)=0 \\
\end{align}$
Hence, we get $\alpha =3\beta \ or\ \beta =3\alpha $.
One can go wrong while writing the sum of roots and product of roots. He/she may write
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
& \text{Product of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
\end{align}$
Which is wrong. Hence, we need to apply the above relations very carefully. Correct relation is given as;
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
${{x}_{1}}+{{x}_{2}}=\dfrac{-B}{A}\And {{x}_{1}}{{x}_{2}}=\dfrac{C}{A}$
Use the given relation to solve the given equation.
We have given that $\left( \alpha ,\beta \right)$ are roots of the quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Another information given here is
$3{{b}^{2}}=16ac...........\left( 1 \right)$
Now, $\left( \alpha ,\beta \right)$ are roots of quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Hence, relation between roots and coefficients of any quadratic is given as
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{-}\left( \text{coefficient of }x \right)}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Therefore, we have quadratic equation as;
$a{{x}^{2}}+bx+c=0\text{ }$
Sum of roots $=\alpha +\beta =\dfrac{-b}{a}...................\left( 2 \right)$
Product of roots $=\alpha \beta =\dfrac{c}{a}.....................\left( 3 \right)$
Now, from equation (1), we have
$3{{b}^{2}}=16ac$
Putting value of ‘b’ from equation (2) i.e. $-a\left( \alpha +\beta \right)$ in the above equation, we get;
$3{{a}^{2}}{{\left( \alpha +\beta \right)}^{2}}=16ac$
Transferring ${{a}^{2}}$ to another side, we get;
$3{{\left( \alpha +\beta \right)}^{2}}=\dfrac{16ac}{{{a}^{2}}}=16\dfrac{c}{a}$
From equation (3), we can replace $'\dfrac{c}{a}'$ by $\alpha \text{ }\beta $ from above equation;
$3{{\left( \alpha +\beta \right)}^{2}}=16\alpha \beta $
We have identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab,$ applying it with the above equation we get;
\[\begin{align}
& 3\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \right)=16\alpha \beta \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}+6\alpha \beta -16\alpha \beta =0 \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0 \\
\end{align}\]
Dividing whole equation by ‘${{\alpha }^{2}}$’, we get;
$3+3{{\left( \dfrac{\beta }{\alpha } \right)}^{2}}-10\left( \dfrac{\beta }{\alpha } \right)=0$
Let $\dfrac{\beta }{\alpha }='t'$ we can write above equation as;
$3{{t}^{2}}-10t+3=0$ …………………(4)
Now, splitting the middle term to get summation of 10 and product ‘9’, we get;
$\begin{align}
& 3{{t}^{2}}-9t-t+3=0 \\
& 3t\left( t-3 \right)-1\left( t-3 \right)=0 \\
& \left( t-3 \right)\left( t-\dfrac{1}{3} \right)=0 \\
& t=\dfrac{1}{3},t=3 \\
\end{align}$
As, we have suppose $t\ \text{as}\ \dfrac{\beta }{\alpha }$ , Hence we get;
$\begin{align}
& \dfrac{\beta }{\alpha }=\dfrac{1}{3}\ \And \dfrac{\beta }{\alpha }=3 \\
& or \\
& 3\beta =\alpha ,\beta =3\alpha \\
\end{align}$
Therefore, Option (C) is the correct answer.
Note: One can go wrong while factoring $3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0$. To minimize the confusion, divide the whole equation by ${{\alpha }^{2}}\ \And \ {{\beta }^{2}}$.
We can factorize $3{{\alpha }^{2}}-10\alpha \beta +3{{\beta }^{2}}=0$ as splitting middle term to $-9\alpha \beta \ and\ -\alpha \beta $ as
$\begin{align}
& 3{{\alpha }^{2}}-9\alpha \beta -\alpha \beta +3{{\beta }^{2}}=0 \\
& 3\alpha \left( \alpha -3\beta \right)-\beta \left( \alpha -3\beta \right)=0 \\
& \left( \alpha -3\beta \right)\left( 3\alpha -\beta \right)=0 \\
\end{align}$
Hence, we get $\alpha =3\beta \ or\ \beta =3\alpha $.
One can go wrong while writing the sum of roots and product of roots. He/she may write
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
& \text{Product of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
\end{align}$
Which is wrong. Hence, we need to apply the above relations very carefully. Correct relation is given as;
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it