
If the roots of the equation \[{x^3} - 12{x^2} + 39x - 28 = 0\] are in A.P., then its common difference is:
A) \[ \pm 1\]
B) \[ \pm 2\]
C) \[ \pm 3\]
D) \[ \pm 4\]
Answer
579.3k+ views
Hint:We use the concept of the highest power of any equation is the number of the roots of the equation. Since in our problem we have the highest power three. Hence the given equation has three roots. These are in A.P. we solve the problem by using the properties of A.P.
Let us consider, \[\alpha ,\beta ,\gamma \] be three roots of a cubic equation \[p{x^3} + q{x^2} + rx + s = 0\]. Then, by the relation between roots and coefficients we get,
\[
\alpha + \beta + \gamma = \dfrac{{ - q}}{p} \\
\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{r}{p} \\
\alpha \beta \gamma = \dfrac{{ - s}}{p} \\
\]
Complete step-by-step answer:
It is given that the equation is \[{x^3} - 12{x^2} + 39x - 28 = 0\].
We know that the highest power of any equation is the number of roots of that equation. Since, the highest power the given equation is three, so, the given equation has three roots.
It is also given that; the roots of the given equation are in A.P.
Let us consider the roots as \[a - d,a,a + d\] where, \[d\] is the common difference.
We have to find the value of this common difference that means the value of \[d\].
Now, from the relation between roots and coefficient we get,
\[a - d + a + a + d = 12\]….. (1)
\[a(a - d) + a(a + d) + (a - d)(a + d) = 39\]… (2)
\[(a - d)a(a + d) = 28\]… (3)
Solving the equation (1) we get,
\[3a = 12\]
(We can eliminate \[d\] as the sum of negative and positive value of same number is always zero)
Dividing we get,
\[a = 4\]
Next, we will find the value of \[d\].
From equation (2) we get,
\[{a^2} - ad + {a^2} + ad + {a^2} - {d^2} = 39\]
Eliminating \[ - ad\] and \[ad\] we get,
\[3{a^2} - {d^2} = 39\]
Substitute the value of \[a = 4\] in above equation we get,
\[3{(4)^2} - {d^2} = 39\]
Simplifying we get,
\[{d^2} = 48 - 39\]
Simplifying again we get,
\[{d^2} = 9\]
Taking square root of both side we get,
\[d = \pm 3\]
Hence,
The common difference of the roots of the given equation is \[d = \pm 3\]
The correct option is (C) \[d = \pm 3\].
Here, we get two values of common difference that is \[d = \pm 3\]. Let us try to find out the roots.
For, \[d = 3\], the roots are, \[4 - 3,4,4 + 3\] that is \[1,4,7\]
Again,
For, \[d = - 3\], the roots are, \[4 + 3,4,4 - 3\] that is \[7,4,1.\]
It shows that for two different values of common difference, the roots will always be the same.
Note:An arithmetic progression is a sequence of numbers in which each term is derived from the preceding term by adding or subtracting a fixed number called the common difference "d".
The general form of an arithmetic progression is $a - d,{\text{ }}a,{\text{ }}a + d,{\text{ }}a + 2d,....$and so on. Thus the nth term of an AP series is ${T_n} = a + (n - 1)d$, where ${T_n} = {\text{nth }}$term and a is first term. Here d is a common difference = ${T_n} = {T_{n - 1}}$
Let us consider, \[\alpha ,\beta ,\gamma \] be three roots of a cubic equation \[p{x^3} + q{x^2} + rx + s = 0\]. Then, by the relation between roots and coefficients we get,
\[
\alpha + \beta + \gamma = \dfrac{{ - q}}{p} \\
\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{r}{p} \\
\alpha \beta \gamma = \dfrac{{ - s}}{p} \\
\]
Complete step-by-step answer:
It is given that the equation is \[{x^3} - 12{x^2} + 39x - 28 = 0\].
We know that the highest power of any equation is the number of roots of that equation. Since, the highest power the given equation is three, so, the given equation has three roots.
It is also given that; the roots of the given equation are in A.P.
Let us consider the roots as \[a - d,a,a + d\] where, \[d\] is the common difference.
We have to find the value of this common difference that means the value of \[d\].
Now, from the relation between roots and coefficient we get,
\[a - d + a + a + d = 12\]….. (1)
\[a(a - d) + a(a + d) + (a - d)(a + d) = 39\]… (2)
\[(a - d)a(a + d) = 28\]… (3)
Solving the equation (1) we get,
\[3a = 12\]
(We can eliminate \[d\] as the sum of negative and positive value of same number is always zero)
Dividing we get,
\[a = 4\]
Next, we will find the value of \[d\].
From equation (2) we get,
\[{a^2} - ad + {a^2} + ad + {a^2} - {d^2} = 39\]
Eliminating \[ - ad\] and \[ad\] we get,
\[3{a^2} - {d^2} = 39\]
Substitute the value of \[a = 4\] in above equation we get,
\[3{(4)^2} - {d^2} = 39\]
Simplifying we get,
\[{d^2} = 48 - 39\]
Simplifying again we get,
\[{d^2} = 9\]
Taking square root of both side we get,
\[d = \pm 3\]
Hence,
The common difference of the roots of the given equation is \[d = \pm 3\]
The correct option is (C) \[d = \pm 3\].
Here, we get two values of common difference that is \[d = \pm 3\]. Let us try to find out the roots.
For, \[d = 3\], the roots are, \[4 - 3,4,4 + 3\] that is \[1,4,7\]
Again,
For, \[d = - 3\], the roots are, \[4 + 3,4,4 - 3\] that is \[7,4,1.\]
It shows that for two different values of common difference, the roots will always be the same.
Note:An arithmetic progression is a sequence of numbers in which each term is derived from the preceding term by adding or subtracting a fixed number called the common difference "d".
The general form of an arithmetic progression is $a - d,{\text{ }}a,{\text{ }}a + d,{\text{ }}a + 2d,....$and so on. Thus the nth term of an AP series is ${T_n} = a + (n - 1)d$, where ${T_n} = {\text{nth }}$term and a is first term. Here d is a common difference = ${T_n} = {T_{n - 1}}$
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

