
If the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21, find the quotient and value of k. Hence, find the zeros of the cubic polynomial \[{x^3} + 2{x^2} + kx - 18\].
Answer
579.9k+ views
Hint: We will use the remainder formula to find k from the given equation and long division process to find the quotient. We will also use the division formula of polynomials to get the zeros of the polynomial.
Complete step by step answer:
Given that the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21
We have the following terms:
Dividend: \[f(x) = {x^3} + 2{x^2} + kx + 3\]
Divisor: \[{\text{ }}g\left( x \right){\text{ }} = {\text{ }}x{\text{ }} - {\text{ }}3\] and remainder, \[r{\text{ }}\left( x \right){\text{ }} = {\text{ }}21\]
Using the remainder formula, we have the following expression:
\[f\left( 3 \right) = 21\]
\[
\Rightarrow {(3)^3} + 2.{(3)^2} + k.(3) + 3 = 21 \\
\Rightarrow 27 + 18 + 3k + 3 = 21 \\
\Rightarrow 3k = - 27 \\
\Rightarrow k = - 9 \\
\]
So, the polynomial is, \[p(x) = {x^3} + 2{x^2} - 9x + 3\]
Now, from the long division, we get,
\[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}({x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6){\text{ }} + {\text{ }}21\]
∴ The quotient \[ = {\text{ }}{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6\]
Clearly, \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-21 + 3 = \] \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-{\text{ }}18\] is divisible by, \[x - 3\]
\[
= {x^3} - 3{x^2} + 5{x^2} - 15x + 6x - 18 \\
= {x^2}(x - 3) + 5x(x - 3) + 6(x - 3) \\
\]
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6} \right)\;\]
On further splitting of middle terms we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2} + 3x + 2x + {\text{ }}6} \right)\]
On further simplification we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {x{\text{ }} + {\text{ }}2} \right)\left( {x{\text{ }} + {\text{ }}3} \right)\]
For, now, \[(x - 3)\]we have, \[x = 3\]
Then, for, (\[x + 2\]) we have, \[x = - 2\]
And also, for, (\[x + 3\]) we have, \[x = - 3\]
Therefore, the zeroes of \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x\; - {\text{ }}18\] are 3, -2 and -3.
Note: We have the remainder theorem as , \[f(x) = g(x).h(x) + r(x)\]. Where \[f(x)\]is the dividend and \[g(x)\]is the divisor. We also have \[r\left( x \right)\]as the reminder. This type of problems are built with the concept of long division altogether.
Complete step by step answer:
Given that the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21
We have the following terms:
Dividend: \[f(x) = {x^3} + 2{x^2} + kx + 3\]
Divisor: \[{\text{ }}g\left( x \right){\text{ }} = {\text{ }}x{\text{ }} - {\text{ }}3\] and remainder, \[r{\text{ }}\left( x \right){\text{ }} = {\text{ }}21\]
Using the remainder formula, we have the following expression:
\[f\left( 3 \right) = 21\]
\[
\Rightarrow {(3)^3} + 2.{(3)^2} + k.(3) + 3 = 21 \\
\Rightarrow 27 + 18 + 3k + 3 = 21 \\
\Rightarrow 3k = - 27 \\
\Rightarrow k = - 9 \\
\]
So, the polynomial is, \[p(x) = {x^3} + 2{x^2} - 9x + 3\]
Now, from the long division, we get,
\[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}({x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6){\text{ }} + {\text{ }}21\]
∴ The quotient \[ = {\text{ }}{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6\]
Clearly, \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-21 + 3 = \] \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-{\text{ }}18\] is divisible by, \[x - 3\]
\[
= {x^3} - 3{x^2} + 5{x^2} - 15x + 6x - 18 \\
= {x^2}(x - 3) + 5x(x - 3) + 6(x - 3) \\
\]
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6} \right)\;\]
On further splitting of middle terms we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2} + 3x + 2x + {\text{ }}6} \right)\]
On further simplification we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {x{\text{ }} + {\text{ }}2} \right)\left( {x{\text{ }} + {\text{ }}3} \right)\]
For, now, \[(x - 3)\]we have, \[x = 3\]
Then, for, (\[x + 2\]) we have, \[x = - 2\]
And also, for, (\[x + 3\]) we have, \[x = - 3\]
Therefore, the zeroes of \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x\; - {\text{ }}18\] are 3, -2 and -3.
Note: We have the remainder theorem as , \[f(x) = g(x).h(x) + r(x)\]. Where \[f(x)\]is the dividend and \[g(x)\]is the divisor. We also have \[r\left( x \right)\]as the reminder. This type of problems are built with the concept of long division altogether.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

Which is the longest day and the shortest night in class 9 social science CBSE

Which are the Top 10 Largest States of India?

Why did Aurangzeb ban the playing of the pungi Answer class 9 english CBSE

Distinguish between the following Ferrous and nonferrous class 9 social science CBSE


