Answer
Verified
426.6k+ views
Hint: In the above question, the dividend is given as $\left( {{x}^{4}}+10{{x}^{3}}+35{{x}^{2}}+50x+29 \right)$, and the divisor is given to be $\left( x+4 \right)$. So we can use the long division method to carry out the required division of the dividend by the divisor. From there, we will get the required value of the remainder. Also, we will get the quotient as a polynomial of third degree, which on comparing with the given quotient $\left( {{x}^{3}}-a{{x}^{2}}+bx+6 \right)$ will yield the required values of the coefficients $a$ and $b$.
Complete step by step solution:
According to the above question, we are given the dividend to be $\left( {{x}^{4}}+10{{x}^{3}}+35{{x}^{2}}+50x+29 \right)$ and the divisor to be $\left( x+4 \right)$. So we can carry out the long division of these to find out the quotient and the remainder as shown below.
\[x+4\overset{{{x}^{3}}+6{{x}^{2}}+11x+6}{\overline{\left){\begin{align}
& {{x}^{4}}+10{{x}^{3}}+35{{x}^{2}}+50x+29 \\
& \underline{{{x}^{4}}+4{{x}^{3}}} \\
& 6{{x}^{3}}+35{{x}^{2}}+50x+29 \\
& \underline{6{{x}^{3}}+24{{x}^{2}}} \\
& 11{{x}^{2}}+50x+29 \\
& \underline{11{{x}^{2}}+44x} \\
& 6x+29 \\
& \underline{6x+24} \\
& \underline{5} \\
\end{align}}\right.}}\]
From the above, we see that the quotient is equal to \[{{x}^{3}}+6{{x}^{2}}+11x+6\]. In the above question, the quotient is given as $\left( {{x}^{3}}-a{{x}^{2}}+bx+6 \right)$. On comparing the coefficients of these two, we get
$\begin{align}
& \Rightarrow -a=6 \\
& \Rightarrow a=-6 \\
\end{align}$
And
$\Rightarrow b=11$
Also, from the above division, the remainder is equal to $5$.
Hence, the values of $a$, $b$ and the remainder are $-6$, $11$ and $5$ respectively.
Note: We can also use the remainder theorem to get the value of the remainder directly without carrying out the long division. The remainder theorem states that when a polynomial $p\left( x \right)$ is divided by the divisor $\left( x+a \right)$, then the remainder obtained will be equal to $p\left( -a \right)$. In our case the divisor was given as $\left( x+4 \right)$. Therefore, on substituting $x=-4$ in the given dividend $\left( {{x}^{4}}+10{{x}^{3}}+35{{x}^{2}}+50x+29 \right)$ we will directly obtain the remainder as $5$.
Complete step by step solution:
According to the above question, we are given the dividend to be $\left( {{x}^{4}}+10{{x}^{3}}+35{{x}^{2}}+50x+29 \right)$ and the divisor to be $\left( x+4 \right)$. So we can carry out the long division of these to find out the quotient and the remainder as shown below.
\[x+4\overset{{{x}^{3}}+6{{x}^{2}}+11x+6}{\overline{\left){\begin{align}
& {{x}^{4}}+10{{x}^{3}}+35{{x}^{2}}+50x+29 \\
& \underline{{{x}^{4}}+4{{x}^{3}}} \\
& 6{{x}^{3}}+35{{x}^{2}}+50x+29 \\
& \underline{6{{x}^{3}}+24{{x}^{2}}} \\
& 11{{x}^{2}}+50x+29 \\
& \underline{11{{x}^{2}}+44x} \\
& 6x+29 \\
& \underline{6x+24} \\
& \underline{5} \\
\end{align}}\right.}}\]
From the above, we see that the quotient is equal to \[{{x}^{3}}+6{{x}^{2}}+11x+6\]. In the above question, the quotient is given as $\left( {{x}^{3}}-a{{x}^{2}}+bx+6 \right)$. On comparing the coefficients of these two, we get
$\begin{align}
& \Rightarrow -a=6 \\
& \Rightarrow a=-6 \\
\end{align}$
And
$\Rightarrow b=11$
Also, from the above division, the remainder is equal to $5$.
Hence, the values of $a$, $b$ and the remainder are $-6$, $11$ and $5$ respectively.
Note: We can also use the remainder theorem to get the value of the remainder directly without carrying out the long division. The remainder theorem states that when a polynomial $p\left( x \right)$ is divided by the divisor $\left( x+a \right)$, then the remainder obtained will be equal to $p\left( -a \right)$. In our case the divisor was given as $\left( x+4 \right)$. Therefore, on substituting $x=-4$ in the given dividend $\left( {{x}^{4}}+10{{x}^{3}}+35{{x}^{2}}+50x+29 \right)$ we will directly obtain the remainder as $5$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it