
If the quadratic equation $p{x^2} - 2\sqrt 5 px + 15 = 0$ has two equal roots then find the value of p.
Answer
606.3k+ views
Hint: Here we go through the properties of the quadratic equation as we know when the roots of the quadratic equation are equal then their discriminant must be equal to zero. So we equate discriminant of this equation equal to zero for finding the value of p.
Complete step-by-step answer:
We know that if in quadratic equation $a{x^2} + bx + c = 0$ when the two roots are equal then its discriminant is equal to zero I.e. ${b^2} - 4ac = 0$.
Now in the question the given quadratic equation is $p{x^2} - 2\sqrt 5 px + 15 = 0$.
By equating it with the general quadratic equation we get a=p, b$ = - 2\sqrt 5 p$ and c=15.
Now we will calculate its discriminant by formula ${b^2} - 4ac = 0$.
$
\Rightarrow {\left( { - 2\sqrt 5 p} \right)^2} - 4 \times p \times 15 = 0 \\
\Rightarrow 20{p^2} - 60p = 0 \\
$
Now take 20p as common we get,
$ \Rightarrow 20p(p - 3) = 0$
When p−3=0 then p=3 or p=0
$p \ne 0$ As it makes a coefficient of ${x^2} = 0$.
Hence, p=3 is the correct answer.
Note: Whenever we face such a question the key concept for solving the question is first point out the hint that is given in the question here in this question the hint is the roots are equal. By this hint we have to think about that case when the roots of the quadratic equation are equal. Then apply that case for finding the value of an unknown term.
Complete step-by-step answer:
We know that if in quadratic equation $a{x^2} + bx + c = 0$ when the two roots are equal then its discriminant is equal to zero I.e. ${b^2} - 4ac = 0$.
Now in the question the given quadratic equation is $p{x^2} - 2\sqrt 5 px + 15 = 0$.
By equating it with the general quadratic equation we get a=p, b$ = - 2\sqrt 5 p$ and c=15.
Now we will calculate its discriminant by formula ${b^2} - 4ac = 0$.
$
\Rightarrow {\left( { - 2\sqrt 5 p} \right)^2} - 4 \times p \times 15 = 0 \\
\Rightarrow 20{p^2} - 60p = 0 \\
$
Now take 20p as common we get,
$ \Rightarrow 20p(p - 3) = 0$
When p−3=0 then p=3 or p=0
$p \ne 0$ As it makes a coefficient of ${x^2} = 0$.
Hence, p=3 is the correct answer.
Note: Whenever we face such a question the key concept for solving the question is first point out the hint that is given in the question here in this question the hint is the roots are equal. By this hint we have to think about that case when the roots of the quadratic equation are equal. Then apply that case for finding the value of an unknown term.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

