
If the \[{p^{th}},{q^{th}}\,\& \,{r^{th}}\]terms of a H.P. area, b & c respectively, then the value of \[ab(p - q) + bc(q - r) + ca(r - p)\]is
Answer
580.2k+ views
Hint: A harmonic progression (HP) is defined as a sequence of real numbers which is determined by taking the reciprocals of the arithmetic. Progression that does not contain O.In the HP, any term in the sequence is considered as the Harmonic mean of its two neighbors for example,
The sequence a, b, c, d is considered as an arithmetic progression, the harmonic progression can be written as \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\]
Complete step by step solution:
Given that a, b, c is the \[{p^{th}},{q^{th}},{r^{th}}\] terms of a H.P.
We know that H.P is the reciprocal of the arithmetic progression so,
\[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\]are the \[{p^{th}},{q^{th}},{r^{th}}\] term of A.P.
Let the A.P have \[x\] as the first term and as the common difference
\[\dfrac{1}{a} = x + (p - 1)d......(1)\]
\[\dfrac{1}{b} = \,x + \,(q - 1)d\].......(2)
\[\dfrac{1}{c} = x + (r - 1)d......(3)\]
From the question we need \[(p - q)\], so we subtract \[e{q^n}(2)\] from \[e{q^n}(1)\], so we get
\[\dfrac{1}{a} - \dfrac{1}{b} = x + (p - 1)d - (x + (q - 1)d\]
\[ = \not x + (p - 1)d - \not x(q - 1)d\]
\[ = \not x + (p - 1)d - \not x(q - 1)d\]
We took d common from the equation we have
\[\dfrac{1}{a} - \dfrac{1}{b} = (p - q)d\]
\[e{q^n}(2)\]
\[d = \dfrac{{b - a}}{{ab(p - q)}}\]
Similarly,
We subtract \[e{q^n}\] from \[e{q^n}(2)\]so we get
\[\dfrac{1}{b} - \dfrac{1}{c} = (q - r)d\]
\[d = \dfrac{{c - b}}{{cb(q - r)}}\]
\[d = \dfrac{{c - b}}{{cb(q - r)}}\]
Similarly
We subtract \[e{q^n}(1)\]from \[e{q^n}(3)\] we get
\[\dfrac{1}{c} - \dfrac{1}{a} = \,(r - p)d\]
\[d = \dfrac{{a - c}}{{ac(r - p)}}\]
Now we have 3 values of d
i.e.
\[d = \dfrac{{b - a}}{{ab(p - q)}} = \dfrac{{c - b}}{{bc(q - r)}} = \dfrac{{a - v}}{{ac(r - p)}}\]
We know that if
\[x = \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\] then
then\[x = \dfrac{{a + c + e}}{{b + d + f}}\]
Now,\[d = \dfrac{{\not b - \not a + \not c - \not b + \not a - \not c}}{{ab(p - q) + cb(q - r) + ac(r - p)}}\]
\[d = \dfrac{O}{{ab(p - q) + cb(q - r) + ac(r - p)}}\]
We took the denominator in opposite side,
\[ab(p - q) + cb(q - r) + ac(r - p)d = O\]
\[ab(p - q) + cb(q - r) + ac(r - p) = O\]
Hence,
\[ab(p - q) + cb(q - r) + ac(r - p)\] is equal to Zero
Note:
Harmonic mean is calculated as the reciprocal of the arithmetic mean of the reciprocals
The formula to calculate the harmonic mean is given by
\[Harmonic\,Mean = \dfrac{h}{{\left[ {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} + \dfrac{1}{d}....} \right]}}\]
a, b, c, d are the values and n are the number of value present
relation between AM, GM and HM
\[ \to AM \geqslant G.M \geqslant H.M\,\] where
\[AM,GM,HM\,are\,in\,G.P\]
\[ \to AM \geqslant G.M \geqslant H.M\,\]
The sequence a, b, c, d is considered as an arithmetic progression, the harmonic progression can be written as \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\]
Complete step by step solution:
Given that a, b, c is the \[{p^{th}},{q^{th}},{r^{th}}\] terms of a H.P.
We know that H.P is the reciprocal of the arithmetic progression so,
\[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\]are the \[{p^{th}},{q^{th}},{r^{th}}\] term of A.P.
Let the A.P have \[x\] as the first term and as the common difference
\[\dfrac{1}{a} = x + (p - 1)d......(1)\]
\[\dfrac{1}{b} = \,x + \,(q - 1)d\].......(2)
\[\dfrac{1}{c} = x + (r - 1)d......(3)\]
From the question we need \[(p - q)\], so we subtract \[e{q^n}(2)\] from \[e{q^n}(1)\], so we get
\[\dfrac{1}{a} - \dfrac{1}{b} = x + (p - 1)d - (x + (q - 1)d\]
\[ = \not x + (p - 1)d - \not x(q - 1)d\]
\[ = \not x + (p - 1)d - \not x(q - 1)d\]
We took d common from the equation we have
\[\dfrac{1}{a} - \dfrac{1}{b} = (p - q)d\]
\[e{q^n}(2)\]
\[d = \dfrac{{b - a}}{{ab(p - q)}}\]
Similarly,
We subtract \[e{q^n}\] from \[e{q^n}(2)\]so we get
\[\dfrac{1}{b} - \dfrac{1}{c} = (q - r)d\]
\[d = \dfrac{{c - b}}{{cb(q - r)}}\]
\[d = \dfrac{{c - b}}{{cb(q - r)}}\]
Similarly
We subtract \[e{q^n}(1)\]from \[e{q^n}(3)\] we get
\[\dfrac{1}{c} - \dfrac{1}{a} = \,(r - p)d\]
\[d = \dfrac{{a - c}}{{ac(r - p)}}\]
Now we have 3 values of d
i.e.
\[d = \dfrac{{b - a}}{{ab(p - q)}} = \dfrac{{c - b}}{{bc(q - r)}} = \dfrac{{a - v}}{{ac(r - p)}}\]
We know that if
\[x = \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\] then
then\[x = \dfrac{{a + c + e}}{{b + d + f}}\]
Now,\[d = \dfrac{{\not b - \not a + \not c - \not b + \not a - \not c}}{{ab(p - q) + cb(q - r) + ac(r - p)}}\]
\[d = \dfrac{O}{{ab(p - q) + cb(q - r) + ac(r - p)}}\]
We took the denominator in opposite side,
\[ab(p - q) + cb(q - r) + ac(r - p)d = O\]
\[ab(p - q) + cb(q - r) + ac(r - p) = O\]
Hence,
\[ab(p - q) + cb(q - r) + ac(r - p)\] is equal to Zero
Note:
Harmonic mean is calculated as the reciprocal of the arithmetic mean of the reciprocals
The formula to calculate the harmonic mean is given by
\[Harmonic\,Mean = \dfrac{h}{{\left[ {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} + \dfrac{1}{d}....} \right]}}\]
a, b, c, d are the values and n are the number of value present
relation between AM, GM and HM
\[ \to AM \geqslant G.M \geqslant H.M\,\] where
\[AM,GM,HM\,are\,in\,G.P\]
\[ \to AM \geqslant G.M \geqslant H.M\,\]
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

