Answer

Verified

348.3k+ views

**Hint:**To solve this question we need to know the concept of multiplication of algebraic numbers. We will be multiplying all the fractions and will be finding the numerator and denominator of the fraction. All the constant terms which are $a,b,c$ having certain powers which are given in the question will be added as the terms are being multiplied.

**Complete step by step solution:**

The question ask us to find the value of $x$, if the product of the three terms \[\left( \dfrac{7}{9}a{{b}^{2}} \right)\],\[\left( \dfrac{15}{7}a{{c}^{2}}b \right)\] and \[\left( -\dfrac{3}{5}{{a}^{2}}c \right)\] which is given to us is $\dfrac{-1}{x}{{a}^{4}}{{b}^{3}}{{c}^{3}}$. We are asked to find the value of $x$ by equating the product to the fraction $\dfrac{-1}{x}{{a}^{4}}{{b}^{3}}{{c}^{3}}$. The first step to solve it this problem will be to calculate the product of the terms \[\left( \dfrac{7}{9}a{{b}^{2}} \right)\],\[\left( \dfrac{15}{7}a{{c}^{2}}b \right)\] and \[\left( -\dfrac{3}{5}{{a}^{2}}c \right)\]. On calculating it we get:

$\Rightarrow \left( \dfrac{7}{9}a{{b}^{2}} \right)\times \left( \dfrac{15}{7}a{{c}^{2}}b \right)\times \left( -\dfrac{3}{5}{{a}^{2}}c \right)$

We will have fractional terms having numbers, and since each constant term which is being multiplied has a certain power, the powers on the constant number will be added. On solving this we get:

$\Rightarrow \dfrac{7}{9}\times \dfrac{15}{7}\times \left( -\dfrac{3}{5} \right)\times {{a}^{1+1+2}}\times {{b}^{2+1+0}}\times {{c}^{0+2+1}}$

$\Rightarrow \dfrac{7\times 15\times \left( -3 \right)}{9\times 7\times 5}\times {{a}^{1+1+2}}\times {{b}^{2+1+0}}\times {{c}^{0+2+1}}$

Now we will be cancelling the common terms in the numerator and the denominator, on doing this we get:

$\Rightarrow \dfrac{-1}{1}\times {{a}^{4}}\times {{b}^{3}}\times {{c}^{3}}$

So the product we get is:

$\Rightarrow \dfrac{-1}{1}{{a}^{4}}{{b}^{3}}{{c}^{3}}$

The second step is to equate the product to the term $\dfrac{-1}{x}{{a}^{4}}{{b}^{3}}{{c}^{3}}$. Now equating the two we get:

$\Rightarrow \dfrac{-1}{1}{{a}^{4}}{{b}^{3}}{{c}^{3}}=\dfrac{-1}{x}{{a}^{4}}{{b}^{3}}{{c}^{3}}$

On analysing the two, the value of $x$ we get is $1$.

$\therefore $ If the product of \[\left( \dfrac{7}{9}a{{b}^{2}} \right)\times \left( \dfrac{15}{7}a{{c}^{2}}b \right)\times \left( -\dfrac{3}{5}{{a}^{2}}c \right)\] is $\dfrac{-1}{x}{{a}^{4}}{{b}^{3}}{{c}^{3}}$ , then the value of $x$ is $1$.

**Note:**When a constant number having different powers are multiplied then the powers are added having the common base. For example if the three terms being multiplied are ${{a}^{m}},{{a}^{n}}$ and ${{a}^{p}}$ then the product result into ${{a}^{m+n+p}}$. On writing it mathematically we get:

$\Rightarrow {{a}^{m}}\times {{a}^{n}}\times {{a}^{n}}={{a}^{m+n+p}}$

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE