Answer
Verified
370.8k+ views
Hint: To find the ${{5}^{th}}$ term of the AP we will use ${{n}^{th}}$ term of an A.P formula. Firstly we will write down the formula to find the ${{n}^{th}}$ term of an A.P then we will compare it by the ${{n}^{th}}$ term of the A.P given. Then we will get the value of the first term and the common difference of the A.P. Finally we will use the ${{n}^{th}}$ term of an A.P formula to get our ${{5}^{th}}$ term and desired answer.
Complete step-by-step solution:
It is given to us that ${{n}^{th}}$ term of the AP is as follows:
$6n+2$
So we can say that:
${{a}_{n}}=6n+2$……$\left( 1 \right)$
Now we know the formula to find ${{n}^{th}}$ term of the AP is as below:
${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
Which when simplified is written as:
${{a}_{n}}={{a}_{1}}+dn-d$……$\left( 2 \right)$
On comparing coefficient of equation (1) and equation (2) we get,
By comparing coefficient of $n$
$d=6$…$\left( 3 \right)$
On comparing constant term,
${{a}_{1}}-d=2$
Put value from equation (3) above we get,
$\begin{align}
& {{a}_{1}}-6=2 \\
& \Rightarrow {{a}_{1}}=2+6 \\
\end{align}$
$\therefore {{a}_{1}}=8$…..$\left( 4 \right)$
Now as we have to find the ${{5}^{th}}$ term of the A.P so,
$n=5$…..$\left( 5 \right)$
Put values from equation (3) (4) and (5) in equation (2) we get,
$\begin{align}
& {{a}_{5}}=8+6\times 5-6 \\
& \Rightarrow {{a}_{5}}=8+30-6 \\
& \therefore {{a}_{n}}=32 \\
\end{align}$
Hence ${{5}^{th}}$ term of the AP is 32.
Note: An A.P fully written as Arithmetic Progression is a sequence of numbers in a way that the difference between each consecutive number is constant i.e. there is common difference between each consecutive term. A finite portion of arithmetic progression is called a finite arithmetic progression. The sum of the members of a finite arithmetic progression is known as arithmetic series.
Complete step-by-step solution:
It is given to us that ${{n}^{th}}$ term of the AP is as follows:
$6n+2$
So we can say that:
${{a}_{n}}=6n+2$……$\left( 1 \right)$
Now we know the formula to find ${{n}^{th}}$ term of the AP is as below:
${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
Which when simplified is written as:
${{a}_{n}}={{a}_{1}}+dn-d$……$\left( 2 \right)$
On comparing coefficient of equation (1) and equation (2) we get,
By comparing coefficient of $n$
$d=6$…$\left( 3 \right)$
On comparing constant term,
${{a}_{1}}-d=2$
Put value from equation (3) above we get,
$\begin{align}
& {{a}_{1}}-6=2 \\
& \Rightarrow {{a}_{1}}=2+6 \\
\end{align}$
$\therefore {{a}_{1}}=8$…..$\left( 4 \right)$
Now as we have to find the ${{5}^{th}}$ term of the A.P so,
$n=5$…..$\left( 5 \right)$
Put values from equation (3) (4) and (5) in equation (2) we get,
$\begin{align}
& {{a}_{5}}=8+6\times 5-6 \\
& \Rightarrow {{a}_{5}}=8+30-6 \\
& \therefore {{a}_{n}}=32 \\
\end{align}$
Hence ${{5}^{th}}$ term of the AP is 32.
Note: An A.P fully written as Arithmetic Progression is a sequence of numbers in a way that the difference between each consecutive number is constant i.e. there is common difference between each consecutive term. A finite portion of arithmetic progression is called a finite arithmetic progression. The sum of the members of a finite arithmetic progression is known as arithmetic series.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE