
If the midpoint of the line joining (3, 4) and (k, 7) is (x, y) and also passes through 2x+2y+1=0, then find the value of ‘k’.
Answer
594.3k+ views
Hint: First find the midpoint between (3,4) and (k,7) using formula,
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\] where (x, y) is the midpoint of points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] then put it in the equation 2x +2y +1 = 0 to get the value of ‘K’.
Complete step-by-step answer:
At first we will find the midpoint using the formula
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
Where (x, y) is the midpoint of points \[\left( {{x}_{1}},{{y}_{1}} \right)\]and \[\left( {{x}_{2}},{{y}_{2}} \right)\].
So, if the points are (k,7) and (3,4) then its midpoint will be
\[\left( \dfrac{k+3}{2},\dfrac{7+4}{2} \right)=\left( \dfrac{k+3}{2},\dfrac{11}{2} \right)\]
Now we were given that (x,y) were the mid points of (3,4) and (k,7) then we can say that,
\[\left( \dfrac{k+3}{2},\dfrac{11}{2} \right)=\left( x,y \right)\]
In the question it is given that (x, y) passes through line 2x + 2y + 1 = 0.
So, substituting \[x=\dfrac{k+3}{2},y=\dfrac{11}{2}\] in equation 2x + 2y + 1 = 0, we get,
\[2\left( \dfrac{k+3}{2} \right)+2\left( \dfrac{11}{2} \right)+1=0\]
On further calculations we get,
$\Rightarrow$ k + 3 + 11 + 1 = 0
$\Rightarrow$ k + 15 = 0
$\Rightarrow$ k = -15
Therefore, the required value of ‘k’ is ‘-15’.
Note: Students after finding out midpoint they generally get confused about how to find ‘k’. If a line is passing through another line, then the intersection point is the same. So, read the question thoroughly before solving it and also be careful about calculation errors. Another approach is finding the equation of line passing through the points (3, 4) and (k, 7), then finding the intersection point of this line with 2x+2y+1=0.
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\] where (x, y) is the midpoint of points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] then put it in the equation 2x +2y +1 = 0 to get the value of ‘K’.
Complete step-by-step answer:
At first we will find the midpoint using the formula
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
Where (x, y) is the midpoint of points \[\left( {{x}_{1}},{{y}_{1}} \right)\]and \[\left( {{x}_{2}},{{y}_{2}} \right)\].
So, if the points are (k,7) and (3,4) then its midpoint will be
\[\left( \dfrac{k+3}{2},\dfrac{7+4}{2} \right)=\left( \dfrac{k+3}{2},\dfrac{11}{2} \right)\]
Now we were given that (x,y) were the mid points of (3,4) and (k,7) then we can say that,
\[\left( \dfrac{k+3}{2},\dfrac{11}{2} \right)=\left( x,y \right)\]
In the question it is given that (x, y) passes through line 2x + 2y + 1 = 0.
So, substituting \[x=\dfrac{k+3}{2},y=\dfrac{11}{2}\] in equation 2x + 2y + 1 = 0, we get,
\[2\left( \dfrac{k+3}{2} \right)+2\left( \dfrac{11}{2} \right)+1=0\]
On further calculations we get,
$\Rightarrow$ k + 3 + 11 + 1 = 0
$\Rightarrow$ k + 15 = 0
$\Rightarrow$ k = -15
Therefore, the required value of ‘k’ is ‘-15’.
Note: Students after finding out midpoint they generally get confused about how to find ‘k’. If a line is passing through another line, then the intersection point is the same. So, read the question thoroughly before solving it and also be careful about calculation errors. Another approach is finding the equation of line passing through the points (3, 4) and (k, 7), then finding the intersection point of this line with 2x+2y+1=0.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

