Answer

Verified

447.6k+ views

Hint: Let us find the point where the given line intersects x-axis and y-axis (i.e. point A and point B) and then find distance between these points.

Complete step-by-step answer:

As we know that if any line intersects the x-axis at any point A then the y-coordinate of the point A will be equal to zero.

So, putting y = 0 in the given equation. We get,

3x + 0 – 24 =0

x = 8

So, coordinates of point A will be A (8, 0).

And if any line intersects the y-axis at any point B then the x-coordinate of the point B will be equal to zero.

So, putting x = 0 in the given equation. We get,

0 + 4y – 24 =0

y = 6

So, coordinates of point B will be B (0, 6).

And O is the origin. So, coordinates of O will be O (0, 0).

As we know from the properties of the triangle that incentre of any triangle XYZ having coordinates X \[\left( {{{\text{x}}_{\text{1}}}{\text{, }}{{\text{y}}_{\text{1}}}} \right)\], Y \[\left( {{{\text{x}}_{\text{2}}}{\text{, }}{{\text{y}}_{\text{2}}}} \right)\] and Z \[\left( {{{\text{x}}_{\text{3}}}{\text{, }}{{\text{y}}_{\text{3}}}} \right)\] and length of YZ is a, length of ZX is b and the length of XY is c is given as I\[\left( {{\text{h, k}}} \right)\]. Where h = \[\dfrac{{{\text{a}}{{\text{x}}_{\text{1}}}{\text{ + b}}{{\text{x}}_{\text{2}}}{\text{ + c}}{{\text{x}}_{\text{3}}}}}{{{\text{a + b + c}}}}\] and k = \[\dfrac{{{\text{a}}{{\text{y}}_{\text{1}}}{\text{ + b}}{{\text{y}}_{\text{2}}}{\text{ + c}}{{\text{y}}_{\text{3}}}}}{{{\text{a + b + c}}}}\].

So, to find the incentre of the given triangle OAB. We had to find the length of OA, AB and BO.

And to find the distance between two points we had to use distance formula which states that if P \[\left( {{{\text{x}}_{\text{1}}}{\text{, }}{{\text{y}}_{\text{1}}}} \right)\] and Q \[\left( {{{\text{x}}_{\text{2}}}{\text{, }}{{\text{y}}_{\text{2}}}} \right)\] are the two given points then PQ = \[\sqrt {{{\left( {{{\text{x}}_{\text{1}}}{\text{ - }}{{\text{x}}_{\text{2}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{{\text{y}}_{\text{1}}}{\text{ - }}{{\text{y}}_{\text{2}}}} \right)}^{\text{2}}}} \]

Let the length of AB be a.

So, AB = a = \[\sqrt {{{\left( {{\text{8 - 0}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{0 - 6}}} \right)}^{\text{2}}}} {\text{ = }}\sqrt {{\text{100}}} {\text{ = 10}}\]

Let the length of OB be a.

So, OB = b = \[\sqrt {{{\left( {{\text{0 - 0}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{0 - 6}}} \right)}^{\text{2}}}} {\text{ = }}\sqrt {36} {\text{ = 6}}\]

Let the length of AO will be c.

So, AO = c = \[\sqrt {{{\left( {{\text{8 - 0}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{0 - 0}}} \right)}^{\text{2}}}} {\text{ = }}\sqrt {64} {\text{ = 8}}\]

Now applying Incentre formula in triangle OAB . Where \[{{\text{x}}_{\text{1}}}{\text{, }}{{\text{x}}_{\text{2}}}\] and \[{{\text{x}}_{\text{3}}}\] are the x-coordinates,\[{{\text{y}}_{\text{1}}}{\text{, }}{{\text{y}}_{\text{2}}}\] and \[{{\text{y}}_{\text{3}}}\] are the y-coordinates of O, A and B.

And a, b, c is specified above.

So, Incentre = \[\left( {\dfrac{{{\text{0 + 6*8 + 0}}}}{{{\text{10 + 6 + 8}}}}{\text{, }}\dfrac{{{\text{0 + 0 + 8*6}}}}{{{\text{10 + 6 + 8}}}}} \right){\text{ = }}\left( {{\text{2, 2}}} \right)\].

So, the coordinates of the incentre of triangle OAB will be (2, 2).

Hence, the correct option will be B.

Note: Whenever we come up with type of problem where we are asked to find the incentre of triangle then first, we had to find the coordinates of the vertices of the triangle and then we had to find the length of its all sides after that we can apply direct formula for finding the coordinates of incentre of the triangle that is I = \[\left( {\dfrac{{{\text{a}}{{\text{x}}_{\text{1}}}{\text{ + b}}{{\text{x}}_{\text{2}}}{\text{ + c}}{{\text{x}}_{\text{3}}}}}{{{\text{a + b + c}}}},{\text{ }}\dfrac{{{\text{a}}{{\text{y}}_{\text{1}}}{\text{ + b}}{{\text{y}}_{\text{2}}}{\text{ + c}}{{\text{y}}_{\text{3}}}}}{{{\text{a + b + c}}}}} \right)\].

Complete step-by-step answer:

As we know that if any line intersects the x-axis at any point A then the y-coordinate of the point A will be equal to zero.

So, putting y = 0 in the given equation. We get,

3x + 0 – 24 =0

x = 8

So, coordinates of point A will be A (8, 0).

And if any line intersects the y-axis at any point B then the x-coordinate of the point B will be equal to zero.

So, putting x = 0 in the given equation. We get,

0 + 4y – 24 =0

y = 6

So, coordinates of point B will be B (0, 6).

And O is the origin. So, coordinates of O will be O (0, 0).

As we know from the properties of the triangle that incentre of any triangle XYZ having coordinates X \[\left( {{{\text{x}}_{\text{1}}}{\text{, }}{{\text{y}}_{\text{1}}}} \right)\], Y \[\left( {{{\text{x}}_{\text{2}}}{\text{, }}{{\text{y}}_{\text{2}}}} \right)\] and Z \[\left( {{{\text{x}}_{\text{3}}}{\text{, }}{{\text{y}}_{\text{3}}}} \right)\] and length of YZ is a, length of ZX is b and the length of XY is c is given as I\[\left( {{\text{h, k}}} \right)\]. Where h = \[\dfrac{{{\text{a}}{{\text{x}}_{\text{1}}}{\text{ + b}}{{\text{x}}_{\text{2}}}{\text{ + c}}{{\text{x}}_{\text{3}}}}}{{{\text{a + b + c}}}}\] and k = \[\dfrac{{{\text{a}}{{\text{y}}_{\text{1}}}{\text{ + b}}{{\text{y}}_{\text{2}}}{\text{ + c}}{{\text{y}}_{\text{3}}}}}{{{\text{a + b + c}}}}\].

So, to find the incentre of the given triangle OAB. We had to find the length of OA, AB and BO.

And to find the distance between two points we had to use distance formula which states that if P \[\left( {{{\text{x}}_{\text{1}}}{\text{, }}{{\text{y}}_{\text{1}}}} \right)\] and Q \[\left( {{{\text{x}}_{\text{2}}}{\text{, }}{{\text{y}}_{\text{2}}}} \right)\] are the two given points then PQ = \[\sqrt {{{\left( {{{\text{x}}_{\text{1}}}{\text{ - }}{{\text{x}}_{\text{2}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{{\text{y}}_{\text{1}}}{\text{ - }}{{\text{y}}_{\text{2}}}} \right)}^{\text{2}}}} \]

Let the length of AB be a.

So, AB = a = \[\sqrt {{{\left( {{\text{8 - 0}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{0 - 6}}} \right)}^{\text{2}}}} {\text{ = }}\sqrt {{\text{100}}} {\text{ = 10}}\]

Let the length of OB be a.

So, OB = b = \[\sqrt {{{\left( {{\text{0 - 0}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{0 - 6}}} \right)}^{\text{2}}}} {\text{ = }}\sqrt {36} {\text{ = 6}}\]

Let the length of AO will be c.

So, AO = c = \[\sqrt {{{\left( {{\text{8 - 0}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{0 - 0}}} \right)}^{\text{2}}}} {\text{ = }}\sqrt {64} {\text{ = 8}}\]

Now applying Incentre formula in triangle OAB . Where \[{{\text{x}}_{\text{1}}}{\text{, }}{{\text{x}}_{\text{2}}}\] and \[{{\text{x}}_{\text{3}}}\] are the x-coordinates,\[{{\text{y}}_{\text{1}}}{\text{, }}{{\text{y}}_{\text{2}}}\] and \[{{\text{y}}_{\text{3}}}\] are the y-coordinates of O, A and B.

And a, b, c is specified above.

So, Incentre = \[\left( {\dfrac{{{\text{0 + 6*8 + 0}}}}{{{\text{10 + 6 + 8}}}}{\text{, }}\dfrac{{{\text{0 + 0 + 8*6}}}}{{{\text{10 + 6 + 8}}}}} \right){\text{ = }}\left( {{\text{2, 2}}} \right)\].

So, the coordinates of the incentre of triangle OAB will be (2, 2).

Hence, the correct option will be B.

Note: Whenever we come up with type of problem where we are asked to find the incentre of triangle then first, we had to find the coordinates of the vertices of the triangle and then we had to find the length of its all sides after that we can apply direct formula for finding the coordinates of incentre of the triangle that is I = \[\left( {\dfrac{{{\text{a}}{{\text{x}}_{\text{1}}}{\text{ + b}}{{\text{x}}_{\text{2}}}{\text{ + c}}{{\text{x}}_{\text{3}}}}}{{{\text{a + b + c}}}},{\text{ }}\dfrac{{{\text{a}}{{\text{y}}_{\text{1}}}{\text{ + b}}{{\text{y}}_{\text{2}}}{\text{ + c}}{{\text{y}}_{\text{3}}}}}{{{\text{a + b + c}}}}} \right)\].

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE