
If the H.C.F of (x, y) =1, then the H.C.F of (x-y, x+y) =
A. 1 or 2
B. x or y
C. x+y or x-y
D. 4
Answer
619.8k+ views
Hint: Suppose any two random numbers whose H.C.F is 1, as you know H.C.F of two numbers is 1 if these numbers have no common factors except 1.
Complete step-by-step answer:
Let x=7 and y=5 as 5 and 7 have no common factors except 1 so H.C.F of these numbers is 1. The value of $x + y = 7 + 5 = 12$ and $x - y = 7 - 5 = 2$.
So, H.C.F of (x-y, x+y) =H.C.F of (2, 12). The factors of 2 are 2 and 1 and the factors of 12 is $1 \times 2 \times 2 \times 3$.
So the common factor of (2, 12) is $1 \times 2 = 2$.
Therefore H.C.F of (x-y, x+y) =2.
Now let another two numbers x=2 and y=1, as 2 and 1 have no common factors except 1 so H.C.F of these numbers is 1.
$
\Rightarrow x + y = 2 + 1 = 3 \\
\Rightarrow x - y = 2 - 1 = 1 \\
$
So H.C.F of (x-y, x+y) = H.C.F of (1, 3)
So the factors of 1 and the factors of 3 is $1 \times 3$. So the common factors of (1, 3) is 1.
So, H.C.F of (x-y, x+y) =1.
Therefore, H.C.F of (x-y, x+y) is 1 or 2.
So option ‘a’ is correct.
Note: In such types of questions always put values in place of x and y so that H.C.F of x and y is 1, then calculate the values of $x - y,x + y$ and then calculate the H.C.F of these numbers, then we will get the required answer.
Complete step-by-step answer:
Let x=7 and y=5 as 5 and 7 have no common factors except 1 so H.C.F of these numbers is 1. The value of $x + y = 7 + 5 = 12$ and $x - y = 7 - 5 = 2$.
So, H.C.F of (x-y, x+y) =H.C.F of (2, 12). The factors of 2 are 2 and 1 and the factors of 12 is $1 \times 2 \times 2 \times 3$.
So the common factor of (2, 12) is $1 \times 2 = 2$.
Therefore H.C.F of (x-y, x+y) =2.
Now let another two numbers x=2 and y=1, as 2 and 1 have no common factors except 1 so H.C.F of these numbers is 1.
$
\Rightarrow x + y = 2 + 1 = 3 \\
\Rightarrow x - y = 2 - 1 = 1 \\
$
So H.C.F of (x-y, x+y) = H.C.F of (1, 3)
So the factors of 1 and the factors of 3 is $1 \times 3$. So the common factors of (1, 3) is 1.
So, H.C.F of (x-y, x+y) =1.
Therefore, H.C.F of (x-y, x+y) is 1 or 2.
So option ‘a’ is correct.
Note: In such types of questions always put values in place of x and y so that H.C.F of x and y is 1, then calculate the values of $x - y,x + y$ and then calculate the H.C.F of these numbers, then we will get the required answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

