
If the H.C.F of (x, y) =1, then the H.C.F of (x-y, x+y) =
A. 1 or 2
B. x or y
C. x+y or x-y
D. 4
Answer
605.1k+ views
Hint: Suppose any two random numbers whose H.C.F is 1, as you know H.C.F of two numbers is 1 if these numbers have no common factors except 1.
Complete step-by-step answer:
Let x=7 and y=5 as 5 and 7 have no common factors except 1 so H.C.F of these numbers is 1. The value of $x + y = 7 + 5 = 12$ and $x - y = 7 - 5 = 2$.
So, H.C.F of (x-y, x+y) =H.C.F of (2, 12). The factors of 2 are 2 and 1 and the factors of 12 is $1 \times 2 \times 2 \times 3$.
So the common factor of (2, 12) is $1 \times 2 = 2$.
Therefore H.C.F of (x-y, x+y) =2.
Now let another two numbers x=2 and y=1, as 2 and 1 have no common factors except 1 so H.C.F of these numbers is 1.
$
\Rightarrow x + y = 2 + 1 = 3 \\
\Rightarrow x - y = 2 - 1 = 1 \\
$
So H.C.F of (x-y, x+y) = H.C.F of (1, 3)
So the factors of 1 and the factors of 3 is $1 \times 3$. So the common factors of (1, 3) is 1.
So, H.C.F of (x-y, x+y) =1.
Therefore, H.C.F of (x-y, x+y) is 1 or 2.
So option ‘a’ is correct.
Note: In such types of questions always put values in place of x and y so that H.C.F of x and y is 1, then calculate the values of $x - y,x + y$ and then calculate the H.C.F of these numbers, then we will get the required answer.
Complete step-by-step answer:
Let x=7 and y=5 as 5 and 7 have no common factors except 1 so H.C.F of these numbers is 1. The value of $x + y = 7 + 5 = 12$ and $x - y = 7 - 5 = 2$.
So, H.C.F of (x-y, x+y) =H.C.F of (2, 12). The factors of 2 are 2 and 1 and the factors of 12 is $1 \times 2 \times 2 \times 3$.
So the common factor of (2, 12) is $1 \times 2 = 2$.
Therefore H.C.F of (x-y, x+y) =2.
Now let another two numbers x=2 and y=1, as 2 and 1 have no common factors except 1 so H.C.F of these numbers is 1.
$
\Rightarrow x + y = 2 + 1 = 3 \\
\Rightarrow x - y = 2 - 1 = 1 \\
$
So H.C.F of (x-y, x+y) = H.C.F of (1, 3)
So the factors of 1 and the factors of 3 is $1 \times 3$. So the common factors of (1, 3) is 1.
So, H.C.F of (x-y, x+y) =1.
Therefore, H.C.F of (x-y, x+y) is 1 or 2.
So option ‘a’ is correct.
Note: In such types of questions always put values in place of x and y so that H.C.F of x and y is 1, then calculate the values of $x - y,x + y$ and then calculate the H.C.F of these numbers, then we will get the required answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

