Answer
Verified
489.9k+ views
Hint: We can assume the numbers to be x and y and proceed to form equations so that we can find the desired result. For that we need to remember the formula of AM and GM i.e. arithmetic mean and geometric mean.
Complete step by step answer:
The formula for finding arithmetic mean of two numbers ‘a’ and ‘b’ is $\dfrac{a+b}{2}$
And the formula for calculating geometric mean of two numbers ‘a’ and ‘b’ is $\sqrt{a\cdot b}$
Let us assume that the two positive numbers are ‘x’ and ‘y’.
Their arithmetic mean is given by- $AM=\dfrac{x+y}{2}$ …(i)
Their geometric mean is given by- $GM=\sqrt{x\cdot y}$ …(ii)
From the question we are given that, AM of x and y is equal to 3 times GM of x and y which implies
$AM=3\cdot GM$
Substituting the value of AM and GM from equation (i) and (ii) we have,
\[\begin{align}
& \dfrac{x+y}{2}=3\sqrt{xy} \\
& \Rightarrow x+y=6\sqrt{xy} \\
\end{align}\]
Dividing both sides by $\sqrt{xy}$ we have,
$\begin{align}
& \dfrac{x+y}{\sqrt{xy}}=6 \\
& \Rightarrow \dfrac{x}{\sqrt{xy}}+\dfrac{y}{\sqrt{xy}}=6 \\
\end{align}$
On simplifying we get,
$\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=6$ …(iii)
Now our question was asking us to find the ratio of x and y. Therefore we need to find $x:y\Rightarrow \dfrac{x}{y}$ .
Now let us assume $\dfrac{x}{y}=t$ .
Substituting t in place of $\dfrac{x}{y}$ in equation (iii) we have,
$\sqrt{t}+\sqrt{\dfrac{1}{t}}=6$
On simplifying we get,
$\begin{align}
& \dfrac{\sqrt{t}\cdot \sqrt{t}+\sqrt{1}}{\sqrt{t}}=6 \\
& \Rightarrow \dfrac{t+1}{\sqrt{t}}=6 \\
\end{align}$
Multiplying $\sqrt{t}$ both sides we get,
$\begin{align}
& t+1=6\sqrt{t} \\
& \Rightarrow t-6\sqrt{t}+1=0 \\
\end{align}$
Now we need to solve this equation to get ‘t’.
If we assume $t={{p}^{2}}$ and substitute in the above equation we will have a quadratic equation which we can solve easily.
After substituting ‘t’ we get,
${{p}^{2}}-6p+1=0$
We use the formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ to find roots of the above quadratic equation where a is coefficient of ${{x}^{2}}$ , b is coefficient of x and c is the constant term.
We have, a=1, b=-6 and c=1
Substituting these values in the above equation we get,
$\begin{align}
& p=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow p=\dfrac{-(-6)\pm \sqrt{{{(-6)}^{2}}-4\cdot 1\cdot 1}}{2\cdot 1} \\
\end{align}$
On simplifying we get,
$\begin{align}
& p=\dfrac{6\pm \sqrt{36-4}}{2} \\
& \Rightarrow p=\dfrac{6\pm \sqrt{32}}{2} \\
& \Rightarrow p=\dfrac{6\pm 4\sqrt{2}}{2} \\
& \Rightarrow p=3\pm 2\sqrt{2} \\
\end{align}$
We had, $t={{p}^{2}}$
Therefore, $t={{(3\pm 2\sqrt{2})}^{2}}$
On squaring we get,
$\begin{align}
& t={{3}^{2}}+{{(2\sqrt{2})}^{2}}\pm 2\cdot 3\cdot 2\sqrt{12} \\
& \Rightarrow t=9+8\pm 12\sqrt{12} \\
& \Rightarrow t=17\pm 12\sqrt{12} \\
\end{align}$
Therefore, $t=\dfrac{x}{y}=17\pm 12\sqrt{12}$
Hence, the answer is option (c).
Note: To find the ratio we may think that we separately need to find x and y but for that we would need two equations to find two variables. We only had one equation so we converted it into one variable and we were able to directly find the ratio without actually knowing the value of x and y.
Complete step by step answer:
The formula for finding arithmetic mean of two numbers ‘a’ and ‘b’ is $\dfrac{a+b}{2}$
And the formula for calculating geometric mean of two numbers ‘a’ and ‘b’ is $\sqrt{a\cdot b}$
Let us assume that the two positive numbers are ‘x’ and ‘y’.
Their arithmetic mean is given by- $AM=\dfrac{x+y}{2}$ …(i)
Their geometric mean is given by- $GM=\sqrt{x\cdot y}$ …(ii)
From the question we are given that, AM of x and y is equal to 3 times GM of x and y which implies
$AM=3\cdot GM$
Substituting the value of AM and GM from equation (i) and (ii) we have,
\[\begin{align}
& \dfrac{x+y}{2}=3\sqrt{xy} \\
& \Rightarrow x+y=6\sqrt{xy} \\
\end{align}\]
Dividing both sides by $\sqrt{xy}$ we have,
$\begin{align}
& \dfrac{x+y}{\sqrt{xy}}=6 \\
& \Rightarrow \dfrac{x}{\sqrt{xy}}+\dfrac{y}{\sqrt{xy}}=6 \\
\end{align}$
On simplifying we get,
$\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=6$ …(iii)
Now our question was asking us to find the ratio of x and y. Therefore we need to find $x:y\Rightarrow \dfrac{x}{y}$ .
Now let us assume $\dfrac{x}{y}=t$ .
Substituting t in place of $\dfrac{x}{y}$ in equation (iii) we have,
$\sqrt{t}+\sqrt{\dfrac{1}{t}}=6$
On simplifying we get,
$\begin{align}
& \dfrac{\sqrt{t}\cdot \sqrt{t}+\sqrt{1}}{\sqrt{t}}=6 \\
& \Rightarrow \dfrac{t+1}{\sqrt{t}}=6 \\
\end{align}$
Multiplying $\sqrt{t}$ both sides we get,
$\begin{align}
& t+1=6\sqrt{t} \\
& \Rightarrow t-6\sqrt{t}+1=0 \\
\end{align}$
Now we need to solve this equation to get ‘t’.
If we assume $t={{p}^{2}}$ and substitute in the above equation we will have a quadratic equation which we can solve easily.
After substituting ‘t’ we get,
${{p}^{2}}-6p+1=0$
We use the formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ to find roots of the above quadratic equation where a is coefficient of ${{x}^{2}}$ , b is coefficient of x and c is the constant term.
We have, a=1, b=-6 and c=1
Substituting these values in the above equation we get,
$\begin{align}
& p=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow p=\dfrac{-(-6)\pm \sqrt{{{(-6)}^{2}}-4\cdot 1\cdot 1}}{2\cdot 1} \\
\end{align}$
On simplifying we get,
$\begin{align}
& p=\dfrac{6\pm \sqrt{36-4}}{2} \\
& \Rightarrow p=\dfrac{6\pm \sqrt{32}}{2} \\
& \Rightarrow p=\dfrac{6\pm 4\sqrt{2}}{2} \\
& \Rightarrow p=3\pm 2\sqrt{2} \\
\end{align}$
We had, $t={{p}^{2}}$
Therefore, $t={{(3\pm 2\sqrt{2})}^{2}}$
On squaring we get,
$\begin{align}
& t={{3}^{2}}+{{(2\sqrt{2})}^{2}}\pm 2\cdot 3\cdot 2\sqrt{12} \\
& \Rightarrow t=9+8\pm 12\sqrt{12} \\
& \Rightarrow t=17\pm 12\sqrt{12} \\
\end{align}$
Therefore, $t=\dfrac{x}{y}=17\pm 12\sqrt{12}$
Hence, the answer is option (c).
Note: To find the ratio we may think that we separately need to find x and y but for that we would need two equations to find two variables. We only had one equation so we converted it into one variable and we were able to directly find the ratio without actually knowing the value of x and y.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE