
If $\tan x = \dfrac{{12}}{{13}}$ , then evaluate the value of $\dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$ .
Answer
606.9k+ views
Hint: Use trigonometric identities to simplify the problem.
We know the half angle formula for sin and cosine. These are $\sin 2a = 2\sin a\cos a$ and $\cos 2a = {\cos ^2}a - {\sin ^2}a$ . By using these identities, $\dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}} = \dfrac{{\sin 2x}}{{\cos 2x}} = \tan 2x$ . Now, we have given $\tan x = \dfrac{{12}}{{13}}$ and we need to get the value of $\tan 2x$ . We can use the half angle formula again to write $\tan 2x$ in terms of $\tan x$ . We know that, $\tan 2a = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}}$ . Putting the values, we’ll get,
$
\tan 2a = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}} \\
\Rightarrow \tan 2a = \dfrac{{2\dfrac{{12}}{{13}}}}{{1 - {{(\dfrac{{12}}{{13}})}^2}}}{\text{ }}[{\text{Using}},\tan a = \dfrac{{12}}{{13}}] \\
\Rightarrow \tan 2a = \dfrac{{\dfrac{{24}}{{13}}}}{{1 - \dfrac{{144}}{{169}}}} \\
\Rightarrow \tan 2a = \dfrac{{\dfrac{{24}}{{13}}}}{{\dfrac{{169 - 144}}{{169}}}} \\
\Rightarrow \tan 2a = \dfrac{{\dfrac{{24}}{{13}}}}{{\dfrac{{25}}{{169}}}} \\
\Rightarrow \tan 2a = \dfrac{{24}}{{13}} \times \dfrac{{169}}{{25}} \\
\Rightarrow \tan 2a = \dfrac{{24}}{1} \times \dfrac{{13}}{{25}} \\
\Rightarrow \tan 2a = \dfrac{{312}}{{25}} \\
$
Hence, the required value of $\dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}} = \dfrac{{312}}{{25}}$ .
Note: There is more process to solve this question. We have given$\tan $ratio so we can use it to get the ratios of$\sin {\text{ and cos}}$. Then just putting the value in $\dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$ will give us the answer.
We know the half angle formula for sin and cosine. These are $\sin 2a = 2\sin a\cos a$ and $\cos 2a = {\cos ^2}a - {\sin ^2}a$ . By using these identities, $\dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}} = \dfrac{{\sin 2x}}{{\cos 2x}} = \tan 2x$ . Now, we have given $\tan x = \dfrac{{12}}{{13}}$ and we need to get the value of $\tan 2x$ . We can use the half angle formula again to write $\tan 2x$ in terms of $\tan x$ . We know that, $\tan 2a = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}}$ . Putting the values, we’ll get,
$
\tan 2a = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}} \\
\Rightarrow \tan 2a = \dfrac{{2\dfrac{{12}}{{13}}}}{{1 - {{(\dfrac{{12}}{{13}})}^2}}}{\text{ }}[{\text{Using}},\tan a = \dfrac{{12}}{{13}}] \\
\Rightarrow \tan 2a = \dfrac{{\dfrac{{24}}{{13}}}}{{1 - \dfrac{{144}}{{169}}}} \\
\Rightarrow \tan 2a = \dfrac{{\dfrac{{24}}{{13}}}}{{\dfrac{{169 - 144}}{{169}}}} \\
\Rightarrow \tan 2a = \dfrac{{\dfrac{{24}}{{13}}}}{{\dfrac{{25}}{{169}}}} \\
\Rightarrow \tan 2a = \dfrac{{24}}{{13}} \times \dfrac{{169}}{{25}} \\
\Rightarrow \tan 2a = \dfrac{{24}}{1} \times \dfrac{{13}}{{25}} \\
\Rightarrow \tan 2a = \dfrac{{312}}{{25}} \\
$
Hence, the required value of $\dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}} = \dfrac{{312}}{{25}}$ .
Note: There is more process to solve this question. We have given$\tan $ratio so we can use it to get the ratios of$\sin {\text{ and cos}}$. Then just putting the value in $\dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$ will give us the answer.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

