
If tan A- tan B=x and cot B- cot A=y , then cot ( A-B)=?
A) $\dfrac{1}{y}-\dfrac{1}{x}$
B) $\dfrac{1}{x}-\dfrac{1}{y}$
C) $\dfrac{1}{x}+\dfrac{1}{y}$
D) None of these
Answer
607.2k+ views
Hint: The given problem is related to trigonometric formulae for compound angles. Try to remember the formulae related to $\tan $ and $\cot $ of compound angles.
Complete step-by-step answer:
To solve the given problem, the following formulae will be used:
1) $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$
2) $\tan A\cot A=1$
In the question, we are asked to find the value of $\cot \left( A-B \right)$ in terms of $x$ and $y$ , where the value of \[x\] is given as $x=\tan A-\tan B$ and the value of $y$ is given as $y=\cot B-\cot A$.
Now, we know, $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$.
We will write the RHS as two fractions separated by an additional sign.
So, we get $\cot \left( A-B \right)=\dfrac{\cot A\cot B}{\cot B-\cot A}+\dfrac{1}{\cot B-\cot A}$.
Now, we know, the value of $cotB-\cot A$ is given as $y$. So, we can write $\dfrac{1}{cotB-\cot A}$ as $\dfrac{1}{y}$.
So, $\cot \left( A-B \right)=\dfrac{\cot A\cot B}{\cot B-\cot A}+\dfrac{1}{y}$.
Now, we know, we can write $\dfrac{\cot A\cot B}{\cot B-\cot A}$ as $\dfrac{1}{\dfrac{\cot B-\cot A}{\cot A\cot B}}$, which can further be written as $\dfrac{1}{\dfrac{1}{\cot A}-\dfrac{1}{\cot B}}$.
So, $\cot \left( A-B \right)=\dfrac{1}{\dfrac{1}{\cot A}-\dfrac{1}{\cot B}}+\dfrac{1}{y}$.
Now, we know, $\tan A\cot A=1$. So, $\dfrac{1}{\cot A}=\tan A$ and $\dfrac{1}{\cot B}=\tan B$.
So, $\cot \left( A-B \right)=\dfrac{1}{\tan A-\tan B}+\dfrac{1}{y}$.
Now, we are given that $\tan A-\tan B=x$. So, $\dfrac{1}{\tan A-\tan B}=\dfrac{1}{x}$.
So, $\cot \left( A-B \right)=\dfrac{1}{x}+\dfrac{1}{y}$.
Hence, $\cot \left( A-B \right)$ can be written as $\dfrac{1}{x}+\dfrac{1}{y}$ , where the value of \[x\] is given as $x=\tan A-\tan B$ and the value of $y$ is given as $y=\cot B-\cot A$.
Therefore, the correct option is option C.
Note: Most of the students get confused in the formula of $\cot \left( A-B \right)$. The value of $\cot \left( A-B \right)$ is given as $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$. But generally, students get confused and write the value of $\cot \left( A-B \right)$ as $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot A-\cot B}$, which is wrong. Such confusion should be avoided. This confusion can lead to wrong answers. Also, while making substitutions of $x$ and $y$ , be careful of the sign convention. Sign mistakes are common but can lead to wrong answers and hence, should be avoided
Complete step-by-step answer:
To solve the given problem, the following formulae will be used:
1) $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$
2) $\tan A\cot A=1$
In the question, we are asked to find the value of $\cot \left( A-B \right)$ in terms of $x$ and $y$ , where the value of \[x\] is given as $x=\tan A-\tan B$ and the value of $y$ is given as $y=\cot B-\cot A$.
Now, we know, $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$.
We will write the RHS as two fractions separated by an additional sign.
So, we get $\cot \left( A-B \right)=\dfrac{\cot A\cot B}{\cot B-\cot A}+\dfrac{1}{\cot B-\cot A}$.
Now, we know, the value of $cotB-\cot A$ is given as $y$. So, we can write $\dfrac{1}{cotB-\cot A}$ as $\dfrac{1}{y}$.
So, $\cot \left( A-B \right)=\dfrac{\cot A\cot B}{\cot B-\cot A}+\dfrac{1}{y}$.
Now, we know, we can write $\dfrac{\cot A\cot B}{\cot B-\cot A}$ as $\dfrac{1}{\dfrac{\cot B-\cot A}{\cot A\cot B}}$, which can further be written as $\dfrac{1}{\dfrac{1}{\cot A}-\dfrac{1}{\cot B}}$.
So, $\cot \left( A-B \right)=\dfrac{1}{\dfrac{1}{\cot A}-\dfrac{1}{\cot B}}+\dfrac{1}{y}$.
Now, we know, $\tan A\cot A=1$. So, $\dfrac{1}{\cot A}=\tan A$ and $\dfrac{1}{\cot B}=\tan B$.
So, $\cot \left( A-B \right)=\dfrac{1}{\tan A-\tan B}+\dfrac{1}{y}$.
Now, we are given that $\tan A-\tan B=x$. So, $\dfrac{1}{\tan A-\tan B}=\dfrac{1}{x}$.
So, $\cot \left( A-B \right)=\dfrac{1}{x}+\dfrac{1}{y}$.
Hence, $\cot \left( A-B \right)$ can be written as $\dfrac{1}{x}+\dfrac{1}{y}$ , where the value of \[x\] is given as $x=\tan A-\tan B$ and the value of $y$ is given as $y=\cot B-\cot A$.
Therefore, the correct option is option C.
Note: Most of the students get confused in the formula of $\cot \left( A-B \right)$. The value of $\cot \left( A-B \right)$ is given as $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$. But generally, students get confused and write the value of $\cot \left( A-B \right)$ as $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot A-\cot B}$, which is wrong. Such confusion should be avoided. This confusion can lead to wrong answers. Also, while making substitutions of $x$ and $y$ , be careful of the sign convention. Sign mistakes are common but can lead to wrong answers and hence, should be avoided
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

