
If ${\tan ^{ - 1}}\sqrt 3 + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ then find the value of x.
Answer
606.6k+ views
Hint: To solve this problem we need to have basic knowledge about trigonometric and its values, and also basic calculation for simplifying the values.
Complete step-by-step answer:
Given ${\tan ^{ - 1}}\sqrt 3 + {\cot ^{ - 1}}x = \dfrac{\pi }{2} - - - - - - - > (1)$
We know that ${\tan ^{ - 1}}\sqrt 3 = \dfrac{\pi }{3}$
On substituting the above value in equation (1), we get
$ \Rightarrow \dfrac{\pi }{3} + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$
$ \Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - \dfrac{\pi }{3}$
On taking L.C.M we can rewrite the above term as
$
\Rightarrow {\cot ^{ - 1}}x = \dfrac{{3\pi - 2\pi }}{6} \\
\Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{6} \\
$
$
\Rightarrow x = \cot \dfrac{\pi }{6} = \sqrt 3 \\
\Rightarrow x = \sqrt 3 \\
$
Therefore the value of $x = \sqrt 3 $.
Note: In this problem we took the ${\tan ^{ - 1}}\sqrt 3 $ value and replaced it in the equation. Later we have simplified the $\pi$ values which is equal to cot inverse x and on further simplification we got x value. In this kind of problem instead of solving the equation it’s better to find the value of the term and simplify.
Complete step-by-step answer:
Given ${\tan ^{ - 1}}\sqrt 3 + {\cot ^{ - 1}}x = \dfrac{\pi }{2} - - - - - - - > (1)$
We know that ${\tan ^{ - 1}}\sqrt 3 = \dfrac{\pi }{3}$
On substituting the above value in equation (1), we get
$ \Rightarrow \dfrac{\pi }{3} + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$
$ \Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - \dfrac{\pi }{3}$
On taking L.C.M we can rewrite the above term as
$
\Rightarrow {\cot ^{ - 1}}x = \dfrac{{3\pi - 2\pi }}{6} \\
\Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{6} \\
$
$
\Rightarrow x = \cot \dfrac{\pi }{6} = \sqrt 3 \\
\Rightarrow x = \sqrt 3 \\
$
Therefore the value of $x = \sqrt 3 $.
Note: In this problem we took the ${\tan ^{ - 1}}\sqrt 3 $ value and replaced it in the equation. Later we have simplified the $\pi$ values which is equal to cot inverse x and on further simplification we got x value. In this kind of problem instead of solving the equation it’s better to find the value of the term and simplify.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

