Answer
Verified
494.4k+ views
Hint: - For solving this type of question you have just knowledge of trigonometric transformation and just simple mathematics to proceed further. You have to transform as you can shorten the complex equation in easy form.
Complete step-by-step solution -
As given in question
$\sin \left( {90 - \theta } \right) + \cos \theta = \sqrt 2 \cos \left( {90 - \theta } \right)$
We know $\left( {\because \sin \left( {90 - \theta } \right) = \cos \theta } \right)\left( {\because \cos \left( {90 - \theta } \right) = \sin \theta } \right)$
$ \Rightarrow \cos \theta + \cos \theta = \sqrt 2 \sin \theta $
$ \Rightarrow 2\cos \theta = \sqrt 2 \sin \theta $$ \Rightarrow \frac{{\cos \theta }}{{\sin \theta }} = \frac{{\sqrt 2 }}{2} = \frac{1}{{\sqrt 2 }}$
We know $\left( {\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta } \right)$
$ \Rightarrow \cot \theta = \frac{1}{{\sqrt 2 }}$ $\left( {\because \cos e{c^2}\theta - {{\cot }^2}\theta = 1} \right)\left( {\therefore \cot \theta = \sqrt {\cos e{c^2}\theta - 1} } \right)$
$ \Rightarrow \sqrt {\cos e{c^2}\theta - 1} = \frac{1}{{\sqrt 2 }}$
Squaring on both side, we get
$ \Rightarrow \cos e{c^2}\theta - 1 = \frac{1}{2}$
$\therefore \cos e{c^2}\theta = \frac{3}{2} \Rightarrow \cos ec\theta = \sqrt {\frac{3}{2}} $
Hence the option ${\text{C}}$is the correct option.
Note: -Whenever you get these types of questions the key concept of solving is you have to proceed from the question and just use trigonometric results to get an answer. You have to shorten the complex equation using standard results.
Complete step-by-step solution -
As given in question
$\sin \left( {90 - \theta } \right) + \cos \theta = \sqrt 2 \cos \left( {90 - \theta } \right)$
We know $\left( {\because \sin \left( {90 - \theta } \right) = \cos \theta } \right)\left( {\because \cos \left( {90 - \theta } \right) = \sin \theta } \right)$
$ \Rightarrow \cos \theta + \cos \theta = \sqrt 2 \sin \theta $
$ \Rightarrow 2\cos \theta = \sqrt 2 \sin \theta $$ \Rightarrow \frac{{\cos \theta }}{{\sin \theta }} = \frac{{\sqrt 2 }}{2} = \frac{1}{{\sqrt 2 }}$
We know $\left( {\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta } \right)$
$ \Rightarrow \cot \theta = \frac{1}{{\sqrt 2 }}$ $\left( {\because \cos e{c^2}\theta - {{\cot }^2}\theta = 1} \right)\left( {\therefore \cot \theta = \sqrt {\cos e{c^2}\theta - 1} } \right)$
$ \Rightarrow \sqrt {\cos e{c^2}\theta - 1} = \frac{1}{{\sqrt 2 }}$
Squaring on both side, we get
$ \Rightarrow \cos e{c^2}\theta - 1 = \frac{1}{2}$
$\therefore \cos e{c^2}\theta = \frac{3}{2} \Rightarrow \cos ec\theta = \sqrt {\frac{3}{2}} $
Hence the option ${\text{C}}$is the correct option.
Note: -Whenever you get these types of questions the key concept of solving is you have to proceed from the question and just use trigonometric results to get an answer. You have to shorten the complex equation using standard results.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it