
If $\sec \alpha = \dfrac{5}{4}$ verify that $\dfrac{{\tan \alpha }}{{1 + {{\left( {\tan \alpha } \right)}^2}}} = \dfrac{{\sin \alpha }}{{\sec \alpha }}$.
Answer
620.7k+ views
Hint: Here, we have to simplify the L.H.S and R.H.S and convert them into a simplest trigonometric function by using identity $1 + {\left( {\tan \alpha } \right)^2} = {\left( {\sec \alpha } \right)^2}$ .
Complete step-by-step answer:
Given, $\sec \alpha = \dfrac{5}{4}$
To prove: $\dfrac{{\tan \alpha }}{{1 + {{\left( {\tan \alpha } \right)}^2}}} = \dfrac{{\sin \alpha }}{{\sec \alpha }}$
Taking LHS of the above equation which needs to be proved
i.e., ${\text{LHS}} = \dfrac{{\tan \alpha }}{{1 + {{\left( {\tan \alpha } \right)}^2}}}$
Using the identity $1 + {\left( {\tan \alpha } \right)^2} = {\left( {\sec \alpha } \right)^2}$ , we get
${\text{LHS}} = \dfrac{{\tan \alpha }}{{{{\left( {\sec \alpha } \right)}^2}}}{\text{ }} \to {\text{(1)}}$
As we know that $\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}$ and $\sec \alpha = \dfrac{1}{{\cos \alpha }}$ so we can write that $\tan \alpha = \left( {\sin \alpha } \right)\left( {\sec \alpha } \right)$
Now put $\tan \alpha = \left( {\sin \alpha } \right)\left( {\sec \alpha } \right)$ in equation (1), we get
${\text{LHS}} = \dfrac{{\tan \alpha }}{{{{\left( {\sec \alpha } \right)}^2}}} = \dfrac{{\left( {\sin \alpha } \right)\left( {\sec \alpha } \right)}}{{{{\left( {\sec \alpha } \right)}^2}}} = \dfrac{{\sin \alpha }}{{\sec \alpha }} = {\text{ RHS}}$
Clearly, from the above equation we can say that the LHS of the equation which needs to be proved is equal to the RHS of that equation. Hence, that equation holds true for any value of angle $\alpha $.
Note: In this problem, we are also given the value of $\sec \alpha $ which is not used in order to verify the equation which is asked for. However, another approach is we can put the given value of $\sec \alpha = \dfrac{5}{4}$ and with the help of this value we will find the values of $\tan \alpha $ and $\sin \alpha $then substitute these values in the LHS and RHS of the equation which needs to be proved and from there can verify the equation.
Complete step-by-step answer:
Given, $\sec \alpha = \dfrac{5}{4}$
To prove: $\dfrac{{\tan \alpha }}{{1 + {{\left( {\tan \alpha } \right)}^2}}} = \dfrac{{\sin \alpha }}{{\sec \alpha }}$
Taking LHS of the above equation which needs to be proved
i.e., ${\text{LHS}} = \dfrac{{\tan \alpha }}{{1 + {{\left( {\tan \alpha } \right)}^2}}}$
Using the identity $1 + {\left( {\tan \alpha } \right)^2} = {\left( {\sec \alpha } \right)^2}$ , we get
${\text{LHS}} = \dfrac{{\tan \alpha }}{{{{\left( {\sec \alpha } \right)}^2}}}{\text{ }} \to {\text{(1)}}$
As we know that $\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}$ and $\sec \alpha = \dfrac{1}{{\cos \alpha }}$ so we can write that $\tan \alpha = \left( {\sin \alpha } \right)\left( {\sec \alpha } \right)$
Now put $\tan \alpha = \left( {\sin \alpha } \right)\left( {\sec \alpha } \right)$ in equation (1), we get
${\text{LHS}} = \dfrac{{\tan \alpha }}{{{{\left( {\sec \alpha } \right)}^2}}} = \dfrac{{\left( {\sin \alpha } \right)\left( {\sec \alpha } \right)}}{{{{\left( {\sec \alpha } \right)}^2}}} = \dfrac{{\sin \alpha }}{{\sec \alpha }} = {\text{ RHS}}$
Clearly, from the above equation we can say that the LHS of the equation which needs to be proved is equal to the RHS of that equation. Hence, that equation holds true for any value of angle $\alpha $.
Note: In this problem, we are also given the value of $\sec \alpha $ which is not used in order to verify the equation which is asked for. However, another approach is we can put the given value of $\sec \alpha = \dfrac{5}{4}$ and with the help of this value we will find the values of $\tan \alpha $ and $\sin \alpha $then substitute these values in the LHS and RHS of the equation which needs to be proved and from there can verify the equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

