
If roots of cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d\] are in G.P., then:
\[\begin{align}
& A.\text{ }{{c}^{3}}a={{b}^{3}}d \\
& B.\text{ }{{a}^{2}}c={{b}^{2}}d \\
& C.\text{ }a{{c}^{2}}=b{{d}^{2}} \\
& D.\text{ NOTA} \\
\end{align}\]
Answer
581.1k+ views
Hint: At first, take roots of the equation as $\alpha ,\alpha r,\alpha {{r}^{2}}$ with r as common ratio, then, use the relation between the roots and coefficient to get relation between a, b, c, d. Sum of roots is related to the ratio of –b and a of the quadratic equation whereas the product of roots is given by ratio of -d and a. Then we have another relation which gives the sum of product of two consecutive roots as ratio of c and a.
Complete step-by-step answer:
In the question, if the roots of cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d\] are in G.P, then, we have to find a relation between a, b, c, d.
Now, as we know that, the roots are in G.P. So, let's suppose the roots are \[\alpha ,\alpha r,\alpha {{r}^{2}}\] with a common ratio 'r'.
So, by relation between the roots and the coefficient of equation, we can say that,
Sum of the roots \[\Rightarrow -\dfrac{b}{a}\]
\[\Rightarrow \alpha +\alpha r+\alpha {{r}^{2}}=-\dfrac{b}{a}\]
Which can be written as,
\[\alpha \left( 1+r+{{r}^{2}} \right)=-\dfrac{b}{a}\]
Product of the roots \[\Rightarrow \dfrac{c}{a}\]
\[\begin{align}
& \Rightarrow \alpha \times \alpha r+\alpha \times \alpha {{r}^{2}}+\alpha r\times \alpha {{r}^{2}}=\dfrac{c}{a} \\
& \Rightarrow {{\alpha }^{2}}r+{{\alpha }^{2}}{{r}^{2}}+{{\alpha }^{2}}{{r}^{3}}=\dfrac{c}{a} \\
\end{align}\]
Which can be written as,
\[{{\alpha }^{2}}r\left( 1+r+{{r}^{2}} \right)=\dfrac{c}{a}\]
We can written it as,
\[\alpha r\times \alpha \left( 1+r+{{r}^{2}} \right)=\dfrac{c}{a}\]
Now, we can write \[\alpha \left( 1+r+{{r}^{2}} \right)\text{ as -}\dfrac{b}{a}\] as we know that \[\alpha \left( 1+r+{{r}^{2}} \right)\text{ as -}\dfrac{b}{a}\]
\[\begin{align}
& \alpha r\times -\dfrac{b}{a}=\dfrac{c}{a} \\
& \Rightarrow \alpha r=-\dfrac{c}{b} \\
\end{align}\]
The final relation between roots and coefficient of equation is,
\[\begin{align}
& \alpha \times \alpha r\times \alpha {{r}^{2}}=-\dfrac{d}{a} \\
& \Rightarrow {{\alpha }^{3}}{{r}^{3}}=-\dfrac{d}{a} \\
\end{align}\]
We know that, \[\alpha r=-\dfrac{c}{b}\]
So, we can write,
\[{{\alpha }^{3}}{{r}^{3}}={{\left( \alpha r \right)}^{3}}\Rightarrow {{\left( -\dfrac{c}{b} \right)}^{3}}\]
We found that \[{{\alpha }^{3}}{{r}^{3}}\text{ is }-\dfrac{d}{a}\] so, we can write,
\[\begin{align}
& {{\left( -\dfrac{c}{b} \right)}^{3}}=-\dfrac{d}{a} \\
& \Rightarrow -\dfrac{{{c}^{3}}}{{{b}^{3}}}=-\dfrac{d}{a} \\
\end{align}\]
Now, on cross multiplication we get,
\[{{c}^{3}}a={{b}^{3}}d\]
So, the correct answer is “Option A”.
Note: When it is said that, roots are given in G.P, then we can take the value of three roots as any three consecutive terms of any G.P such as \(\alpha ,\alpha r,\alpha {r^2}\) by reducing the three variables into two. Also, while taking this, one should know here 'r' which is a common ratio cannot be equal to '0'. If 'r' is equal to '0' then, it will not satisfy the condition of being in G.P.
Complete step-by-step answer:
In the question, if the roots of cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d\] are in G.P, then, we have to find a relation between a, b, c, d.
Now, as we know that, the roots are in G.P. So, let's suppose the roots are \[\alpha ,\alpha r,\alpha {{r}^{2}}\] with a common ratio 'r'.
So, by relation between the roots and the coefficient of equation, we can say that,
Sum of the roots \[\Rightarrow -\dfrac{b}{a}\]
\[\Rightarrow \alpha +\alpha r+\alpha {{r}^{2}}=-\dfrac{b}{a}\]
Which can be written as,
\[\alpha \left( 1+r+{{r}^{2}} \right)=-\dfrac{b}{a}\]
Product of the roots \[\Rightarrow \dfrac{c}{a}\]
\[\begin{align}
& \Rightarrow \alpha \times \alpha r+\alpha \times \alpha {{r}^{2}}+\alpha r\times \alpha {{r}^{2}}=\dfrac{c}{a} \\
& \Rightarrow {{\alpha }^{2}}r+{{\alpha }^{2}}{{r}^{2}}+{{\alpha }^{2}}{{r}^{3}}=\dfrac{c}{a} \\
\end{align}\]
Which can be written as,
\[{{\alpha }^{2}}r\left( 1+r+{{r}^{2}} \right)=\dfrac{c}{a}\]
We can written it as,
\[\alpha r\times \alpha \left( 1+r+{{r}^{2}} \right)=\dfrac{c}{a}\]
Now, we can write \[\alpha \left( 1+r+{{r}^{2}} \right)\text{ as -}\dfrac{b}{a}\] as we know that \[\alpha \left( 1+r+{{r}^{2}} \right)\text{ as -}\dfrac{b}{a}\]
\[\begin{align}
& \alpha r\times -\dfrac{b}{a}=\dfrac{c}{a} \\
& \Rightarrow \alpha r=-\dfrac{c}{b} \\
\end{align}\]
The final relation between roots and coefficient of equation is,
\[\begin{align}
& \alpha \times \alpha r\times \alpha {{r}^{2}}=-\dfrac{d}{a} \\
& \Rightarrow {{\alpha }^{3}}{{r}^{3}}=-\dfrac{d}{a} \\
\end{align}\]
We know that, \[\alpha r=-\dfrac{c}{b}\]
So, we can write,
\[{{\alpha }^{3}}{{r}^{3}}={{\left( \alpha r \right)}^{3}}\Rightarrow {{\left( -\dfrac{c}{b} \right)}^{3}}\]
We found that \[{{\alpha }^{3}}{{r}^{3}}\text{ is }-\dfrac{d}{a}\] so, we can write,
\[\begin{align}
& {{\left( -\dfrac{c}{b} \right)}^{3}}=-\dfrac{d}{a} \\
& \Rightarrow -\dfrac{{{c}^{3}}}{{{b}^{3}}}=-\dfrac{d}{a} \\
\end{align}\]
Now, on cross multiplication we get,
\[{{c}^{3}}a={{b}^{3}}d\]
So, the correct answer is “Option A”.
Note: When it is said that, roots are given in G.P, then we can take the value of three roots as any three consecutive terms of any G.P such as \(\alpha ,\alpha r,\alpha {r^2}\) by reducing the three variables into two. Also, while taking this, one should know here 'r' which is a common ratio cannot be equal to '0'. If 'r' is equal to '0' then, it will not satisfy the condition of being in G.P.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

Which is the longest day and the shortest night in class 9 social science CBSE

Which are the Top 10 Largest States of India?

Why did Aurangzeb ban the playing of the pungi Answer class 9 english CBSE

The voting age has been reduced from 21 to 18 by the class 9 social science CBSE


