Answer

Verified

448.5k+ views

Hint: When a variable varies directly to another (say x varies directly as y), we can write the relation as x=ky (where k is a proportional constant). In this case, since r varies directly as the cube of s, we can write the relation as r=k${{s}^{3}}$ and then solve the question.

Complete step-by-step answer:

Firstly, we try to use the first condition given in the problem (that is, r=5 when s=3). This would help us in finding the value of proportional constant.

r=k${{s}^{3}}$

Putting the value of r=5 when s=3, we get,

5=k$\times {{3}^{3}}$

5=27k

k=$\dfrac{5}{27}$ -- (1)

Now, since we have the value of proportional constant, we can find the value of r for any value of s. We now just have to put the value of k and s in equation r=k${{s}^{3}}$ to get the value of r. Now, we find the value of r for s=2.

r=k${{s}^{3}}$

r=$\dfrac{5}{27}$$\times {{2}^{3}}$

r=$\dfrac{5\times 8}{27}$

r=$\dfrac{40}{27}$

Thus, the value of r is $\dfrac{40}{27}$. Hence, the correct option is (d) None of these.

Hint: To solve problems involving direct and inverse variations in general, we use a general principle to solve the problems. Suppose, c varies directly with d and inversely with e. We use the following relation- c=k$\dfrac{d}{e}$(where k is the value of proportionality constant). The problem can then be solved by acquiring any additional relation which would further help in evaluating the problem further.

Complete step-by-step answer:

Firstly, we try to use the first condition given in the problem (that is, r=5 when s=3). This would help us in finding the value of proportional constant.

r=k${{s}^{3}}$

Putting the value of r=5 when s=3, we get,

5=k$\times {{3}^{3}}$

5=27k

k=$\dfrac{5}{27}$ -- (1)

Now, since we have the value of proportional constant, we can find the value of r for any value of s. We now just have to put the value of k and s in equation r=k${{s}^{3}}$ to get the value of r. Now, we find the value of r for s=2.

r=k${{s}^{3}}$

r=$\dfrac{5}{27}$$\times {{2}^{3}}$

r=$\dfrac{5\times 8}{27}$

r=$\dfrac{40}{27}$

Thus, the value of r is $\dfrac{40}{27}$. Hence, the correct option is (d) None of these.

Hint: To solve problems involving direct and inverse variations in general, we use a general principle to solve the problems. Suppose, c varies directly with d and inversely with e. We use the following relation- c=k$\dfrac{d}{e}$(where k is the value of proportionality constant). The problem can then be solved by acquiring any additional relation which would further help in evaluating the problem further.

Recently Updated Pages

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Let x1x2xn be in an AP of x1 + x4 + x9 + x11 + x20-class-11-maths-CBSE

Let x1x2x3 and x4 be four nonzero real numbers satisfying class 11 maths CBSE

Trending doubts

How many crores make 10 million class 7 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

What are the public facilities provided by the government? Also explain each facility

Write an application to the principal requesting five class 10 english CBSE