
If points ${\text{A}}\left( {6,1} \right),{\text{B}}\left( {8,2} \right),{\text{C}}\left( {9,4} \right){\text{ and D}}\left( {p,3} \right)$are the vertices of a parallelogram, taken in order, find the value of $p$.
Answer
609.9k+ views
Hint- Diagonals of parallelograms are always bisecting each other.
Let ${\text{A}}\left( {6,1} \right),{\text{B}}\left( {8,2} \right),{\text{C}}\left( {9,4} \right){\text{ and D}}\left( {p,3} \right)$be the vertices of a parallelogram ABCD taken in order.
Since the diagonals of a parallelogram bisect each other.
$\therefore $Coordinates of the midpoint of AC$ = $Coordinates of the midpoint of BD
$
\Rightarrow \left( {\dfrac{{6 + 9}}{2},\dfrac{{1 + 4}}{2}} \right) = \left( {\dfrac{{8 + p}}{2},\dfrac{{2 + 3}}{2}} \right) \\
\Rightarrow \left( {\dfrac{{15}}{2},\dfrac{5}{2}} \right) = \left( {\dfrac{{8 + p}}{2},\dfrac{5}{2}} \right) \\
\Rightarrow \dfrac{{15}}{2} = \dfrac{{8 + p}}{2}{\text{ }}\& {\text{ }}\dfrac{5}{2} = \dfrac{5}{2} \\
\Rightarrow 15 = 8 + p \\
\Rightarrow p = 15 - 8 = 7 \\
$
Hence the coordinates of the fourth vertex is $\left( {7,3} \right)$
So, the value of $p$ is 7.
Note- In such types of questions always remember the key concept that the diagonals of parallelogram always bisect each other, so it always intersects at midpoint, so apply mid-point property we will get the required answer.
Let ${\text{A}}\left( {6,1} \right),{\text{B}}\left( {8,2} \right),{\text{C}}\left( {9,4} \right){\text{ and D}}\left( {p,3} \right)$be the vertices of a parallelogram ABCD taken in order.
Since the diagonals of a parallelogram bisect each other.
$\therefore $Coordinates of the midpoint of AC$ = $Coordinates of the midpoint of BD
$
\Rightarrow \left( {\dfrac{{6 + 9}}{2},\dfrac{{1 + 4}}{2}} \right) = \left( {\dfrac{{8 + p}}{2},\dfrac{{2 + 3}}{2}} \right) \\
\Rightarrow \left( {\dfrac{{15}}{2},\dfrac{5}{2}} \right) = \left( {\dfrac{{8 + p}}{2},\dfrac{5}{2}} \right) \\
\Rightarrow \dfrac{{15}}{2} = \dfrac{{8 + p}}{2}{\text{ }}\& {\text{ }}\dfrac{5}{2} = \dfrac{5}{2} \\
\Rightarrow 15 = 8 + p \\
\Rightarrow p = 15 - 8 = 7 \\
$
Hence the coordinates of the fourth vertex is $\left( {7,3} \right)$
So, the value of $p$ is 7.
Note- In such types of questions always remember the key concept that the diagonals of parallelogram always bisect each other, so it always intersects at midpoint, so apply mid-point property we will get the required answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

