
If \[p\left( u \right) = {u^2} + 3u + 4,q\left( u \right) = {u^2} + u - 12\]and\[r\left( u \right) = u - 2\], then find the degree of\[p\left( u \right)q\left( u \right)r\left( u \right)\].
Answer
579.9k+ views
Hint: The degree of a polynomial tells about the number of solutions that function can have and the number of times the function will cross the x-axis. If the degree is zero then then the equation cannot have any solution.
In this question three functions are given whose degree is to be found, here we first find out the product of the function and the highest degree is determined.
Complete step by step solution:
\[p\left( u \right) = {u^2} + 3u + 4\]
\[q\left( u \right) = {u^2} + u - 12\]
\[r\left( u \right) = u - 2\]
All the given equation has the variable u hence we have to find the monomial that has the highest power.
Degree is to be find for the \[p\left( u \right)q\left( u \right)r\left( u \right)\], hence we first find the function whose degree will be find
\[
p\left( u \right)q\left( u \right)r\left( u \right) = \left( {{u^2} + 3u + 4} \right)\left( {{u^2} + u - 12} \right)\left( {u - 2} \right) \\
= \left( {{u^4} + {u^3} - 12{u^2} + 3{u^3} + 3{u^2} - 36u + 4{u^2} + 4u - 48} \right)\left( {u - 2} \right) \\
= \left( {{u^4} + 4{u^3} - 5{u^2} - 32u - 48} \right)\left( {u - 2} \right){\text{ }}\left[ {\because {a^m} \times {a^n} = {a^{m + n}}} \right] \\
= \left( {{u^5} - 2{u^4} + 4{u^4} - 8{u^3} - 5{u^3} + 10{u^2} - 32{u^2} + 64u - 48u + 96} \right) \\
= \left( {{u^5} + 2{u^4} - 13{u^3} - 22{u^2} + 16u + 96} \right) \\
\]
So, the value of \[p\left( u \right)q\left( u \right)r\left( u \right) = \left( {{u^5} + 2{u^4} - 13{u^3} - 22{u^2} + 16u + 96} \right)\]
As we know the degree of a polynomial is the highest power of the nonzero coefficient monomial, so in the obtained polynomial we can see \[{u^5}\]has the highest degree with the coefficient 1 which is the order of the polynomial.
Hence, we can say the degree of \[p\left( u \right)q\left( u \right)r\left( u \right)\] is equal to 5.
Note: When two powers are multiplied together with the same base then their exponents adds up \[{a^m} \times {a^n} = {a^{m + n}}\] here base is \[a\] and the powers are m, n. Two powers with different bases cannot be added together.
In this question three functions are given whose degree is to be found, here we first find out the product of the function and the highest degree is determined.
Complete step by step solution:
\[p\left( u \right) = {u^2} + 3u + 4\]
\[q\left( u \right) = {u^2} + u - 12\]
\[r\left( u \right) = u - 2\]
All the given equation has the variable u hence we have to find the monomial that has the highest power.
Degree is to be find for the \[p\left( u \right)q\left( u \right)r\left( u \right)\], hence we first find the function whose degree will be find
\[
p\left( u \right)q\left( u \right)r\left( u \right) = \left( {{u^2} + 3u + 4} \right)\left( {{u^2} + u - 12} \right)\left( {u - 2} \right) \\
= \left( {{u^4} + {u^3} - 12{u^2} + 3{u^3} + 3{u^2} - 36u + 4{u^2} + 4u - 48} \right)\left( {u - 2} \right) \\
= \left( {{u^4} + 4{u^3} - 5{u^2} - 32u - 48} \right)\left( {u - 2} \right){\text{ }}\left[ {\because {a^m} \times {a^n} = {a^{m + n}}} \right] \\
= \left( {{u^5} - 2{u^4} + 4{u^4} - 8{u^3} - 5{u^3} + 10{u^2} - 32{u^2} + 64u - 48u + 96} \right) \\
= \left( {{u^5} + 2{u^4} - 13{u^3} - 22{u^2} + 16u + 96} \right) \\
\]
So, the value of \[p\left( u \right)q\left( u \right)r\left( u \right) = \left( {{u^5} + 2{u^4} - 13{u^3} - 22{u^2} + 16u + 96} \right)\]
As we know the degree of a polynomial is the highest power of the nonzero coefficient monomial, so in the obtained polynomial we can see \[{u^5}\]has the highest degree with the coefficient 1 which is the order of the polynomial.
Hence, we can say the degree of \[p\left( u \right)q\left( u \right)r\left( u \right)\] is equal to 5.
Note: When two powers are multiplied together with the same base then their exponents adds up \[{a^m} \times {a^n} = {a^{m + n}}\] here base is \[a\] and the powers are m, n. Two powers with different bases cannot be added together.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

What is the missing number in the sequence 259142027 class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

