If ${{p}_{1}},{{p}_{2}},{{p}_{3}}$ are respectively the perpendicular from the vertices of a triangle to the opposite sides, then find the value of ${{p}_{1}}{{p}_{2}}{{p}_{3}}$.
Answer
Verified
439.2k+ views
Hint: Find the area of triangle by taking three different sets of base and height. Then express ${{p}_{1}}$,${{p}_{2}}$ and ${{p}_{3}}$ in terms of area. After getting the values of ${{p}_{1}}$,${{p}_{2}}$ and ${{p}_{3}}$ multiply them and do the necessary simplification to get the required result.
Complete step by step answer:
Let us consider a triangle $\vartriangle ABC$ with sides a, b and c.
${{p}_{1}},{{p}_{2}},{{p}_{3}}$ are the perpendiculars drawn from the vertices A, B and C respectively.
We know the area of triangle $=\dfrac{1}{2}\times base\times height$
Again let us denote the area of triangle ABC as ‘A’.
Here the area can be expressed in three different ways as we have three different sets of base and height.
So, the area of triangle ABC
$\begin{align}
& A=\dfrac{1}{2}\times BC\times AD \\
& \Rightarrow A=\dfrac{1}{2}\times a\times {{p}_{1}} \\
\end{align}$
So, ${{p}_{1}}$ can be written as
$\Rightarrow {{p}_{1}}=\dfrac{2A}{a}$
Again,
$\begin{align}
& A=\dfrac{1}{2}\times AC\times BE \\
& \Rightarrow A=\dfrac{1}{2}\times b\times {{p}_{2}} \\
\end{align}$
So, ${{p}_{2}}$ can be written as
$\Rightarrow {{p}_{2}}=\dfrac{2A}{b}$
Again,
$\begin{align}
& A=\dfrac{1}{2}\times AC\times CF \\
& \Rightarrow A=\dfrac{1}{2}\times c\times {{p}_{3}} \\
\end{align}$
So, ${{p}_{3}}$ can be written as
$\Rightarrow {{p}_{3}}=\dfrac{2A}{c}$
Hence,
$\begin{align}
& {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{2A}{a}\times \dfrac{2A}{b}\times \dfrac{2A}{c} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{A}^{3}}}{abc} \\
\end{align}$
Again as we know \[A=\dfrac{abc}{4R}\] (from sine rule of triangle) where ‘R’ is the radius of the circumcircle.
So, putting the value of ‘A’ in the above expression, we get
$\begin{align}
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{\left( \dfrac{abc}{4R} \right)}^{3}}}{abc} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{a}^{3}}{{b}^{3}}{{c}^{3}}}{64{{R}^{3}}abc} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{{{a}^{2}}{{b}^{2}}{{c}^{2}}}{8{{R}^{3}}} \\
\end{align}$
This is the required solution of the given question.
Note: For the above triangle $\vartriangle ABC$ with sides a, b, c and area ‘A’, the measure of circumradius ‘R’ is $R=\dfrac{abc}{4A}$.
Which can be written as
\[\Rightarrow A=\dfrac{abc}{4R}\]
This value of area is used in the above solution to get the result in a simplified form.
Complete step by step answer:
Let us consider a triangle $\vartriangle ABC$ with sides a, b and c.
${{p}_{1}},{{p}_{2}},{{p}_{3}}$ are the perpendiculars drawn from the vertices A, B and C respectively.
We know the area of triangle $=\dfrac{1}{2}\times base\times height$
Again let us denote the area of triangle ABC as ‘A’.
Here the area can be expressed in three different ways as we have three different sets of base and height.
So, the area of triangle ABC
$\begin{align}
& A=\dfrac{1}{2}\times BC\times AD \\
& \Rightarrow A=\dfrac{1}{2}\times a\times {{p}_{1}} \\
\end{align}$
So, ${{p}_{1}}$ can be written as
$\Rightarrow {{p}_{1}}=\dfrac{2A}{a}$
Again,
$\begin{align}
& A=\dfrac{1}{2}\times AC\times BE \\
& \Rightarrow A=\dfrac{1}{2}\times b\times {{p}_{2}} \\
\end{align}$
So, ${{p}_{2}}$ can be written as
$\Rightarrow {{p}_{2}}=\dfrac{2A}{b}$
Again,
$\begin{align}
& A=\dfrac{1}{2}\times AC\times CF \\
& \Rightarrow A=\dfrac{1}{2}\times c\times {{p}_{3}} \\
\end{align}$
So, ${{p}_{3}}$ can be written as
$\Rightarrow {{p}_{3}}=\dfrac{2A}{c}$
Hence,
$\begin{align}
& {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{2A}{a}\times \dfrac{2A}{b}\times \dfrac{2A}{c} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{A}^{3}}}{abc} \\
\end{align}$
Again as we know \[A=\dfrac{abc}{4R}\] (from sine rule of triangle) where ‘R’ is the radius of the circumcircle.
So, putting the value of ‘A’ in the above expression, we get
$\begin{align}
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{\left( \dfrac{abc}{4R} \right)}^{3}}}{abc} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{a}^{3}}{{b}^{3}}{{c}^{3}}}{64{{R}^{3}}abc} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{{{a}^{2}}{{b}^{2}}{{c}^{2}}}{8{{R}^{3}}} \\
\end{align}$
This is the required solution of the given question.
Note: For the above triangle $\vartriangle ABC$ with sides a, b, c and area ‘A’, the measure of circumradius ‘R’ is $R=\dfrac{abc}{4A}$.
Which can be written as
\[\Rightarrow A=\dfrac{abc}{4R}\]
This value of area is used in the above solution to get the result in a simplified form.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE