
If p, q, r and s are real numbers such that \[pr=2\left( q+s \right)\], then show that at least one of the equations \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] has real roots.
Answer
604.2k+ views
Hint: Roots of quadratic equation are real if and only if the discriminant i.e. $\Delta ={{b}^{2}}-4ac>0$, we will use this concept to solve the above problem.
Complete step-by-step answer:
Given quadratic equations are \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] . Let us name them as equation (1) and equation (2) respectively.
Now we will find discriminants for equation (1) and equation (2).
The above quadratic equations have real roots, so we will find discriminants for equation (1) and equation (2) and then solve the question.
Now we will find the discriminant of equation (1) as b=p, a=1, c=q.
${{\Delta }_{1}}={{b}^{2}}-4ac={{p}^{2}}-4q$
The discriminant of equation (1) is ${{p}^{2}}-4q$ Let this be equation (3).
Now we will find the discriminant of equation (1) as b=r, a=1, c=s.
${{\Delta }_{2}}={{b}^{2}}-4ac={{r}^{2}}-4s$
The discriminant of equation (2) is ${{r}^{2}}-4s$ and let this be equation (4).
Now we will add equation (3) and equation (4) that is adding ${{\Delta }_{1}}+{{\Delta }_{2}}$ , we will get
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}-4q)+({{r}^{2}}-4s)$.
Further simplifying it we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}+{{r}^{2}}-4q-4s)$, Now we will take -2 common from $-4q-4s$ we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
We know that $2q+2s=pr$ , as it was given in the above question.
Now we will substitute it in equation 5.
We will get, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(pr))$
We know a basic algebraic formula, ${{a}^{2}}+{{b}^{2}}-2ab={{(a-b)}^{2}}$ now we will use it in above equation.
$(({{p}^{2}}+{{r}^{2}})-2(pr))$ can be written as ${{(p-r)}^{2}}$.
So, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}={{(p-r)}^{2}}$ which is always greater than or equals to 0.
So, ${{\Delta }_{1}}+{{\Delta }_{2}}\ge 0$
This means both ${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ cannot be negative simultaneously which means at least one or both
${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ should be greater than zero, which means at least one of the equations \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] has real roots.
Note: Analysing is the most important thing that has to be done to solve a problem, basic algebraic formula has to be remembered and can be used wherever needed and the perfect square cannot be negative. There are three types of roots and their nature can be determined by $\Delta $. If $\Delta $ >0 roots are real and if $\Delta $ <0 roots are imaginary and $\Delta $ =0, roots are equal.
Complete step-by-step answer:
Given quadratic equations are \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] . Let us name them as equation (1) and equation (2) respectively.
Now we will find discriminants for equation (1) and equation (2).
The above quadratic equations have real roots, so we will find discriminants for equation (1) and equation (2) and then solve the question.
Now we will find the discriminant of equation (1) as b=p, a=1, c=q.
${{\Delta }_{1}}={{b}^{2}}-4ac={{p}^{2}}-4q$
The discriminant of equation (1) is ${{p}^{2}}-4q$ Let this be equation (3).
Now we will find the discriminant of equation (1) as b=r, a=1, c=s.
${{\Delta }_{2}}={{b}^{2}}-4ac={{r}^{2}}-4s$
The discriminant of equation (2) is ${{r}^{2}}-4s$ and let this be equation (4).
Now we will add equation (3) and equation (4) that is adding ${{\Delta }_{1}}+{{\Delta }_{2}}$ , we will get
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}-4q)+({{r}^{2}}-4s)$.
Further simplifying it we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}+{{r}^{2}}-4q-4s)$, Now we will take -2 common from $-4q-4s$ we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
We know that $2q+2s=pr$ , as it was given in the above question.
Now we will substitute it in equation 5.
We will get, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(pr))$
We know a basic algebraic formula, ${{a}^{2}}+{{b}^{2}}-2ab={{(a-b)}^{2}}$ now we will use it in above equation.
$(({{p}^{2}}+{{r}^{2}})-2(pr))$ can be written as ${{(p-r)}^{2}}$.
So, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}={{(p-r)}^{2}}$ which is always greater than or equals to 0.
So, ${{\Delta }_{1}}+{{\Delta }_{2}}\ge 0$
This means both ${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ cannot be negative simultaneously which means at least one or both
${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ should be greater than zero, which means at least one of the equations \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] has real roots.
Note: Analysing is the most important thing that has to be done to solve a problem, basic algebraic formula has to be remembered and can be used wherever needed and the perfect square cannot be negative. There are three types of roots and their nature can be determined by $\Delta $. If $\Delta $ >0 roots are real and if $\Delta $ <0 roots are imaginary and $\Delta $ =0, roots are equal.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

