Answer
Verified
490.8k+ views
Hint: Roots of quadratic equation are real if and only if the discriminant i.e. $\Delta ={{b}^{2}}-4ac>0$, we will use this concept to solve the above problem.
Complete step-by-step answer:
Given quadratic equations are \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] . Let us name them as equation (1) and equation (2) respectively.
Now we will find discriminants for equation (1) and equation (2).
The above quadratic equations have real roots, so we will find discriminants for equation (1) and equation (2) and then solve the question.
Now we will find the discriminant of equation (1) as b=p, a=1, c=q.
${{\Delta }_{1}}={{b}^{2}}-4ac={{p}^{2}}-4q$
The discriminant of equation (1) is ${{p}^{2}}-4q$ Let this be equation (3).
Now we will find the discriminant of equation (1) as b=r, a=1, c=s.
${{\Delta }_{2}}={{b}^{2}}-4ac={{r}^{2}}-4s$
The discriminant of equation (2) is ${{r}^{2}}-4s$ and let this be equation (4).
Now we will add equation (3) and equation (4) that is adding ${{\Delta }_{1}}+{{\Delta }_{2}}$ , we will get
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}-4q)+({{r}^{2}}-4s)$.
Further simplifying it we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}+{{r}^{2}}-4q-4s)$, Now we will take -2 common from $-4q-4s$ we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
We know that $2q+2s=pr$ , as it was given in the above question.
Now we will substitute it in equation 5.
We will get, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(pr))$
We know a basic algebraic formula, ${{a}^{2}}+{{b}^{2}}-2ab={{(a-b)}^{2}}$ now we will use it in above equation.
$(({{p}^{2}}+{{r}^{2}})-2(pr))$ can be written as ${{(p-r)}^{2}}$.
So, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}={{(p-r)}^{2}}$ which is always greater than or equals to 0.
So, ${{\Delta }_{1}}+{{\Delta }_{2}}\ge 0$
This means both ${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ cannot be negative simultaneously which means at least one or both
${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ should be greater than zero, which means at least one of the equations \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] has real roots.
Note: Analysing is the most important thing that has to be done to solve a problem, basic algebraic formula has to be remembered and can be used wherever needed and the perfect square cannot be negative. There are three types of roots and their nature can be determined by $\Delta $. If $\Delta $ >0 roots are real and if $\Delta $ <0 roots are imaginary and $\Delta $ =0, roots are equal.
Complete step-by-step answer:
Given quadratic equations are \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] . Let us name them as equation (1) and equation (2) respectively.
Now we will find discriminants for equation (1) and equation (2).
The above quadratic equations have real roots, so we will find discriminants for equation (1) and equation (2) and then solve the question.
Now we will find the discriminant of equation (1) as b=p, a=1, c=q.
${{\Delta }_{1}}={{b}^{2}}-4ac={{p}^{2}}-4q$
The discriminant of equation (1) is ${{p}^{2}}-4q$ Let this be equation (3).
Now we will find the discriminant of equation (1) as b=r, a=1, c=s.
${{\Delta }_{2}}={{b}^{2}}-4ac={{r}^{2}}-4s$
The discriminant of equation (2) is ${{r}^{2}}-4s$ and let this be equation (4).
Now we will add equation (3) and equation (4) that is adding ${{\Delta }_{1}}+{{\Delta }_{2}}$ , we will get
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}-4q)+({{r}^{2}}-4s)$.
Further simplifying it we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}+{{r}^{2}}-4q-4s)$, Now we will take -2 common from $-4q-4s$ we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
We know that $2q+2s=pr$ , as it was given in the above question.
Now we will substitute it in equation 5.
We will get, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(pr))$
We know a basic algebraic formula, ${{a}^{2}}+{{b}^{2}}-2ab={{(a-b)}^{2}}$ now we will use it in above equation.
$(({{p}^{2}}+{{r}^{2}})-2(pr))$ can be written as ${{(p-r)}^{2}}$.
So, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}={{(p-r)}^{2}}$ which is always greater than or equals to 0.
So, ${{\Delta }_{1}}+{{\Delta }_{2}}\ge 0$
This means both ${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ cannot be negative simultaneously which means at least one or both
${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ should be greater than zero, which means at least one of the equations \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] has real roots.
Note: Analysing is the most important thing that has to be done to solve a problem, basic algebraic formula has to be remembered and can be used wherever needed and the perfect square cannot be negative. There are three types of roots and their nature can be determined by $\Delta $. If $\Delta $ >0 roots are real and if $\Delta $ <0 roots are imaginary and $\Delta $ =0, roots are equal.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE