Answer
Verified
493.8k+ views
Hint: In the given polynomial \[\left( {{a^2} + 9} \right){x^2} + 13x + 6a\] the degree (highest power) is two. So, the polynomial has two zeros or roots.
Let \[p\] be one of the zero of the polynomials \[\left( {{a^2} + 9} \right){x^2} + 13x + 6a\]. Then the other zero is \[\dfrac{1}{p}\] since one of the zero is the reciprocal of the other.
We know that for the quadratic polynomial \[a{x^2} + bx + c = 0\], the sum of the roots is \[ - \dfrac{b}{a}\] and the product of the roots is \[\dfrac{c}{a}\].
Now consider the product of the zeroes or roots
i.e. \[p \times \dfrac{1}{p} = \dfrac{{6a}}{{{a^2} + 9}}\]
\[
1 = \dfrac{{6a}}{{{a^2} + 9}} \\
{a^2} + 9 = 6a \\
{a^2} - 6a + 9 = 0 \\
\]
By solving \[{a^2} - 6a + 9 = 0\] we get
\[
{a^2} - 3a - 3a + 9 = 0 \\
a\left( {a - 3} \right) - 3\left( {a - 3} \right) = 0 \\
\left( {a - 3} \right)\left( {a - 3} \right) = 0 \\
{\left( {a - 3} \right)^2} = 0 \\
\therefore a = 3 \\
\]
Therefore, the value of \[a\] is \[3\].
Note: The given polynomial is quadratic polynomial since the degree (highest power) is two. In this problem we can also consider the sum of the zeroes or roots but it is a lengthy process. So, we considered the product of the zeroes or roots.
Let \[p\] be one of the zero of the polynomials \[\left( {{a^2} + 9} \right){x^2} + 13x + 6a\]. Then the other zero is \[\dfrac{1}{p}\] since one of the zero is the reciprocal of the other.
We know that for the quadratic polynomial \[a{x^2} + bx + c = 0\], the sum of the roots is \[ - \dfrac{b}{a}\] and the product of the roots is \[\dfrac{c}{a}\].
Now consider the product of the zeroes or roots
i.e. \[p \times \dfrac{1}{p} = \dfrac{{6a}}{{{a^2} + 9}}\]
\[
1 = \dfrac{{6a}}{{{a^2} + 9}} \\
{a^2} + 9 = 6a \\
{a^2} - 6a + 9 = 0 \\
\]
By solving \[{a^2} - 6a + 9 = 0\] we get
\[
{a^2} - 3a - 3a + 9 = 0 \\
a\left( {a - 3} \right) - 3\left( {a - 3} \right) = 0 \\
\left( {a - 3} \right)\left( {a - 3} \right) = 0 \\
{\left( {a - 3} \right)^2} = 0 \\
\therefore a = 3 \\
\]
Therefore, the value of \[a\] is \[3\].
Note: The given polynomial is quadratic polynomial since the degree (highest power) is two. In this problem we can also consider the sum of the zeroes or roots but it is a lengthy process. So, we considered the product of the zeroes or roots.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE