Answer
Verified
466.2k+ views
Hint: To solve the question, we have to apply the sum and product of roots of quadratic equations formulae and calculate the unknown values.
Complete step-by-step answer:
Given
The quadratic equation is \[2{{x}^{2}}+px-4=0\].
The root of the quadratic equation is given as 2.
Let the other root of the quadratic equation be y.
We know that the formula of the sum of roots of a general quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to \[\dfrac{-b}{a}\] and the formula of the product of roots is equal to \[\dfrac{c}{a}\].
By comparing the general quadratic equation with our quadratic equation, we get
a = 2, b = p, c = -4.
The sum of roots of the equation will become\[\dfrac{-p}{2}\]
\[2+y=\dfrac{-p}{2}\]
\[\Rightarrow y=\dfrac{-p}{2}-2\] ……\[(1)\]
The product of roots of the equation\[=\dfrac{-4}{2}=-2\]
\[2y=-2\]
\[\Rightarrow y=-1\]
By substituting the above value in equation (1), we get
\[-1=\dfrac{-p}{2}-2\]
\[1=\dfrac{-p}{2}\]
\[\Rightarrow p=-2\]
The value of p is equal to -2
Hence, the option (b) is the right choice.
Note: The possibility of mistake can be found at the application of the formulae for the sum and the product of the roots of the quadratic equation. The possibility of mistake is calculations as mistakes are possible because of various positive and negative values. The alternative method is by substituting x = 2 in the given quadratic equation and by solving the equation we can find the value of p. The other alternative method of solving can be using the hit-trial method, substitute the options in the given quadratic equation and check whether the root x = 2 can satisfy or not.
Complete step-by-step answer:
Given
The quadratic equation is \[2{{x}^{2}}+px-4=0\].
The root of the quadratic equation is given as 2.
Let the other root of the quadratic equation be y.
We know that the formula of the sum of roots of a general quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to \[\dfrac{-b}{a}\] and the formula of the product of roots is equal to \[\dfrac{c}{a}\].
By comparing the general quadratic equation with our quadratic equation, we get
a = 2, b = p, c = -4.
The sum of roots of the equation will become\[\dfrac{-p}{2}\]
\[2+y=\dfrac{-p}{2}\]
\[\Rightarrow y=\dfrac{-p}{2}-2\] ……\[(1)\]
The product of roots of the equation\[=\dfrac{-4}{2}=-2\]
\[2y=-2\]
\[\Rightarrow y=-1\]
By substituting the above value in equation (1), we get
\[-1=\dfrac{-p}{2}-2\]
\[1=\dfrac{-p}{2}\]
\[\Rightarrow p=-2\]
The value of p is equal to -2
Hence, the option (b) is the right choice.
Note: The possibility of mistake can be found at the application of the formulae for the sum and the product of the roots of the quadratic equation. The possibility of mistake is calculations as mistakes are possible because of various positive and negative values. The alternative method is by substituting x = 2 in the given quadratic equation and by solving the equation we can find the value of p. The other alternative method of solving can be using the hit-trial method, substitute the options in the given quadratic equation and check whether the root x = 2 can satisfy or not.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE