
If one of the roots of ${x^2} + f\left( a \right)x + a = 0 $ is equal to the third power of the other for all real a, then
$a.{\text{ }}$ The domain of the real value function $f$ is the set of non-negative real numbers.
$
b.{\text{ }}f\left( x \right) = - {x^{\dfrac{1}{4}}}\left( {1 + {x^{\dfrac{1}{2}}}} \right) \\
c.{\text{ }}f\left( x \right) = - {x^{\dfrac{1}{4}}} + {x^{\dfrac{3}{2}}} \\
d.{\text{ None of these}} \\
$
Answer
609.3k+ views
Hint: - Use sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$, and product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
Given quadratic equation ${x^2} + f\left( a \right)x + a = 0$
Let $\alpha $and $\beta $be the roots of the equation.
As you know sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$
And product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
$
\Rightarrow \alpha + \beta = \dfrac{{ - f\left( a \right)}}{1} = - f\left( a \right).........\left( 1 \right), \\
\alpha \beta = \dfrac{a}{1} = a...............\left( 2 \right) \\
$
Now it is given that one root is the cube of other
$ \Rightarrow {\alpha ^3} = \beta $
From equation 2, considering real values of $\alpha $ we get
$
{\alpha ^3}\alpha = a \\
\Rightarrow {\alpha ^4} = a \\
\Rightarrow \alpha = \pm {a^{\dfrac{1}{4}}} \\
$
For positive value of $\alpha $
$ \Rightarrow \alpha = + {a^{\dfrac{1}{4}}}.............\left( 3 \right)$
Therefore from equation 1
$
\alpha + \beta = - f\left( a \right) \\
\Rightarrow \alpha + {\alpha ^3} = - f\left( a \right) \\
$
Now, from equation 3
\[
\Rightarrow {a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}} = - f\left( a \right) \\
\Rightarrow f\left( a \right) = - \left( {{a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}}} \right) \\
\Rightarrow f\left( a \right) = - {a^{\dfrac{1}{4}}}\left( {1 + {a^{\dfrac{1}{2}}}} \right) \\
\]
Now, in place of $a$ substitute $x$ in the above equation.
\[ \Rightarrow f\left( x \right) = - {x^{\dfrac{1}{4}}}\left( {1 + {x^{\dfrac{1}{2}}}} \right)\]
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that for a quadratic equation always remember the sum of roots and product of roots which is stated above, then simplify according to the given condition we will get the required answer.
Given quadratic equation ${x^2} + f\left( a \right)x + a = 0$
Let $\alpha $and $\beta $be the roots of the equation.
As you know sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$
And product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
$
\Rightarrow \alpha + \beta = \dfrac{{ - f\left( a \right)}}{1} = - f\left( a \right).........\left( 1 \right), \\
\alpha \beta = \dfrac{a}{1} = a...............\left( 2 \right) \\
$
Now it is given that one root is the cube of other
$ \Rightarrow {\alpha ^3} = \beta $
From equation 2, considering real values of $\alpha $ we get
$
{\alpha ^3}\alpha = a \\
\Rightarrow {\alpha ^4} = a \\
\Rightarrow \alpha = \pm {a^{\dfrac{1}{4}}} \\
$
For positive value of $\alpha $
$ \Rightarrow \alpha = + {a^{\dfrac{1}{4}}}.............\left( 3 \right)$
Therefore from equation 1
$
\alpha + \beta = - f\left( a \right) \\
\Rightarrow \alpha + {\alpha ^3} = - f\left( a \right) \\
$
Now, from equation 3
\[
\Rightarrow {a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}} = - f\left( a \right) \\
\Rightarrow f\left( a \right) = - \left( {{a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}}} \right) \\
\Rightarrow f\left( a \right) = - {a^{\dfrac{1}{4}}}\left( {1 + {a^{\dfrac{1}{2}}}} \right) \\
\]
Now, in place of $a$ substitute $x$ in the above equation.
\[ \Rightarrow f\left( x \right) = - {x^{\dfrac{1}{4}}}\left( {1 + {x^{\dfrac{1}{2}}}} \right)\]
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that for a quadratic equation always remember the sum of roots and product of roots which is stated above, then simplify according to the given condition we will get the required answer.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

