Answer
Verified
496.2k+ views
Hint: - Use sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$, and product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
Given quadratic equation ${x^2} + f\left( a \right)x + a = 0$
Let $\alpha $and $\beta $be the roots of the equation.
As you know sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$
And product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
$
\Rightarrow \alpha + \beta = \dfrac{{ - f\left( a \right)}}{1} = - f\left( a \right).........\left( 1 \right), \\
\alpha \beta = \dfrac{a}{1} = a...............\left( 2 \right) \\
$
Now it is given that one root is the cube of other
$ \Rightarrow {\alpha ^3} = \beta $
From equation 2, considering real values of $\alpha $ we get
$
{\alpha ^3}\alpha = a \\
\Rightarrow {\alpha ^4} = a \\
\Rightarrow \alpha = \pm {a^{\dfrac{1}{4}}} \\
$
For positive value of $\alpha $
$ \Rightarrow \alpha = + {a^{\dfrac{1}{4}}}.............\left( 3 \right)$
Therefore from equation 1
$
\alpha + \beta = - f\left( a \right) \\
\Rightarrow \alpha + {\alpha ^3} = - f\left( a \right) \\
$
Now, from equation 3
\[
\Rightarrow {a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}} = - f\left( a \right) \\
\Rightarrow f\left( a \right) = - \left( {{a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}}} \right) \\
\Rightarrow f\left( a \right) = - {a^{\dfrac{1}{4}}}\left( {1 + {a^{\dfrac{1}{2}}}} \right) \\
\]
Now, in place of $a$ substitute $x$ in the above equation.
\[ \Rightarrow f\left( x \right) = - {x^{\dfrac{1}{4}}}\left( {1 + {x^{\dfrac{1}{2}}}} \right)\]
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that for a quadratic equation always remember the sum of roots and product of roots which is stated above, then simplify according to the given condition we will get the required answer.
Given quadratic equation ${x^2} + f\left( a \right)x + a = 0$
Let $\alpha $and $\beta $be the roots of the equation.
As you know sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$
And product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
$
\Rightarrow \alpha + \beta = \dfrac{{ - f\left( a \right)}}{1} = - f\left( a \right).........\left( 1 \right), \\
\alpha \beta = \dfrac{a}{1} = a...............\left( 2 \right) \\
$
Now it is given that one root is the cube of other
$ \Rightarrow {\alpha ^3} = \beta $
From equation 2, considering real values of $\alpha $ we get
$
{\alpha ^3}\alpha = a \\
\Rightarrow {\alpha ^4} = a \\
\Rightarrow \alpha = \pm {a^{\dfrac{1}{4}}} \\
$
For positive value of $\alpha $
$ \Rightarrow \alpha = + {a^{\dfrac{1}{4}}}.............\left( 3 \right)$
Therefore from equation 1
$
\alpha + \beta = - f\left( a \right) \\
\Rightarrow \alpha + {\alpha ^3} = - f\left( a \right) \\
$
Now, from equation 3
\[
\Rightarrow {a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}} = - f\left( a \right) \\
\Rightarrow f\left( a \right) = - \left( {{a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}}} \right) \\
\Rightarrow f\left( a \right) = - {a^{\dfrac{1}{4}}}\left( {1 + {a^{\dfrac{1}{2}}}} \right) \\
\]
Now, in place of $a$ substitute $x$ in the above equation.
\[ \Rightarrow f\left( x \right) = - {x^{\dfrac{1}{4}}}\left( {1 + {x^{\dfrac{1}{2}}}} \right)\]
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that for a quadratic equation always remember the sum of roots and product of roots which is stated above, then simplify according to the given condition we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE