
If one of the root of \[{\text{ }}2{x^2} - cx + 3 = 0{\text{ }}\]is 3 and the another equation \[2{x^2} - cx + d = 0\]has equal roots where c and d are real numbers, then d is equal to
\[
{\text{a}}{\text{. 3}} \\
{\text{b}}{\text{. }}\dfrac{{{\text{ 49}}}}{8} \\
{\text{c}}{\text{. }}\dfrac{8}{{49}} \\
{\text{d}}{\text{. }} - 3 \\
\]
Answer
609.3k+ views
Hint- In quadratic equation the sum of the roots is${\text{ = }}\left( {\dfrac{{ - {\text{coefficient of }}x}}{{{\text{coefficient of }}{x^2}}}} \right)$, and the product of the roots ${\text{ = }}\left( {\dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{x^2}}}} \right)$
As we know in quadratic equation the sum of the roots is ${\text{ = }}\left( {\dfrac{{ - {\text{coefficient of }}x}}{{{\text{coefficient of }}{x^2}}}} \right)$
So, first equation is \[{\text{ }}2{x^2} - cx + 3 = 0{\text{ }}\]
Let the roots of this equation be $\alpha ,{\text{ }}\beta $
It is given that one of the root is 3
So, let $\alpha {\text{ = 3}}$
$ \Rightarrow $Sum of the roots${\text{ = }}\alpha {\text{ + }}\beta {\text{ = }}\left( {\dfrac{{ - {\text{coefficient of }}x}}{{{\text{coefficient of }}{x^2}}}} \right) = \dfrac{c}{2}$
$ \Rightarrow 3 + \beta = \dfrac{c}{2} \Rightarrow \beta = \dfrac{c}{2} - 3................\left( 1 \right)$
And the product of the roots $\alpha \beta {\text{ = }}\left( {\dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{x^2}}}} \right) = \dfrac{3}{2}$
$ \Rightarrow 3\beta = \dfrac{3}{2} \Rightarrow \beta = \dfrac{1}{2}$
So, from equation 1
$
\beta = \dfrac{c}{2} - 3 \Rightarrow \dfrac{1}{2} = \dfrac{c}{2} - 3 \Rightarrow \dfrac{c}{2} = \dfrac{7}{2} \\
\Rightarrow c = 7................\left( 2 \right) \\
$
Another given equation is \[2{x^2} - cx + d = 0\]
It is given its roots are equal
So let its roots are $\lambda ,\lambda $
$ \Rightarrow $Sum of the roots${\text{ = }}\lambda {\text{ + }}\lambda {\text{ = }}\left( {\dfrac{{ - {\text{coefficient of }}x}}{{{\text{coefficient of }}{x^2}}}} \right) = \dfrac{c}{2}$
$ \Rightarrow 2\lambda = \dfrac{c}{2}$
From equation (2)
$ \Rightarrow 2\lambda = \dfrac{7}{2} \Rightarrow \lambda = \dfrac{7}{4}$
And the product of the roots $\lambda \lambda {\text{ = }}\left( {\dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{x^2}}}} \right) = \dfrac{d}{2}$
$
\Rightarrow {\lambda ^2} = \dfrac{d}{2} \Rightarrow {\left( {\dfrac{7}{4}} \right)^2} = \dfrac{d}{2} \\
\Rightarrow \dfrac{d}{2} = \dfrac{{49}}{{16}} \Rightarrow d = \dfrac{{49}}{8} \\
$
So, option (b) is correct.
Note- In such types of questions the key concept we have to remember is that always remember the sum and product of roots of the quadratic equation which is stated above, then apply these formulas in the given equations and after simplification we will get the required answer.
As we know in quadratic equation the sum of the roots is ${\text{ = }}\left( {\dfrac{{ - {\text{coefficient of }}x}}{{{\text{coefficient of }}{x^2}}}} \right)$
So, first equation is \[{\text{ }}2{x^2} - cx + 3 = 0{\text{ }}\]
Let the roots of this equation be $\alpha ,{\text{ }}\beta $
It is given that one of the root is 3
So, let $\alpha {\text{ = 3}}$
$ \Rightarrow $Sum of the roots${\text{ = }}\alpha {\text{ + }}\beta {\text{ = }}\left( {\dfrac{{ - {\text{coefficient of }}x}}{{{\text{coefficient of }}{x^2}}}} \right) = \dfrac{c}{2}$
$ \Rightarrow 3 + \beta = \dfrac{c}{2} \Rightarrow \beta = \dfrac{c}{2} - 3................\left( 1 \right)$
And the product of the roots $\alpha \beta {\text{ = }}\left( {\dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{x^2}}}} \right) = \dfrac{3}{2}$
$ \Rightarrow 3\beta = \dfrac{3}{2} \Rightarrow \beta = \dfrac{1}{2}$
So, from equation 1
$
\beta = \dfrac{c}{2} - 3 \Rightarrow \dfrac{1}{2} = \dfrac{c}{2} - 3 \Rightarrow \dfrac{c}{2} = \dfrac{7}{2} \\
\Rightarrow c = 7................\left( 2 \right) \\
$
Another given equation is \[2{x^2} - cx + d = 0\]
It is given its roots are equal
So let its roots are $\lambda ,\lambda $
$ \Rightarrow $Sum of the roots${\text{ = }}\lambda {\text{ + }}\lambda {\text{ = }}\left( {\dfrac{{ - {\text{coefficient of }}x}}{{{\text{coefficient of }}{x^2}}}} \right) = \dfrac{c}{2}$
$ \Rightarrow 2\lambda = \dfrac{c}{2}$
From equation (2)
$ \Rightarrow 2\lambda = \dfrac{7}{2} \Rightarrow \lambda = \dfrac{7}{4}$
And the product of the roots $\lambda \lambda {\text{ = }}\left( {\dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{x^2}}}} \right) = \dfrac{d}{2}$
$
\Rightarrow {\lambda ^2} = \dfrac{d}{2} \Rightarrow {\left( {\dfrac{7}{4}} \right)^2} = \dfrac{d}{2} \\
\Rightarrow \dfrac{d}{2} = \dfrac{{49}}{{16}} \Rightarrow d = \dfrac{{49}}{8} \\
$
So, option (b) is correct.
Note- In such types of questions the key concept we have to remember is that always remember the sum and product of roots of the quadratic equation which is stated above, then apply these formulas in the given equations and after simplification we will get the required answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

