Answer
Verified
448.5k+ views
Hint: Here, we know that
the volume of right circular cylinder = n × volume of 1.5 cm diameter coin.
Where, volume of right circular cylinder = $\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{2}}\text{h}$
Where r = radius and h = height
Complete step by step solution: Given that,
⇒ diameter of coin = 1.5 cm.
⇒ height of cylinder = 10 cm.
⇒ diameter of cylinder = 4.5 cm.
Now,
Let n be the number of 1.5 cm diameter coins required to form a right circular cylinder of height 10 cm and diameter 4.5 cm.
Now,
According to the question,
⇒ The volume of right circular cylinder = n × volume of 1.5 cm diameter coin
⇒ We know that,
Volume of cylinder = $\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{2}}\text{h}$.
Where r = radius
h = height of cylinder.
Now,
$\Rightarrow \text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{2}}\text{h}\,\text{=}\,\text{n}\times \text{ }\!\!\pi\!\!\text{ }\,{{\left( \dfrac{1.5}{2} \right)}^{2}}\times 0.2$
⇒ After dividing, we get,
⇒ $\text{n}=\dfrac{\text{ }\!\!\pi\!\!\text{ }{{\left( \dfrac{4.5}{2} \right)}^{2}}\times 10}{\text{ }\!\!\pi\!\!\text{ }{{\left( \dfrac{1.5}{2} \right)}^{2}}\times \dfrac{2}{10}}$
After dividing, we get
⇒ n = 9 × 10 × 5
⇒ n = 450
Note: in this type of question we know about the right circula cylinder that is a cylinder with the bases circular and with the axis joining the two centers of the bases perpendicular to the planes of the two bases. Here, we know that volume of right circular cylinder = $\pi\text{r}^{2}\text{h}$ and then take volume of right circular cylinder = n × volume of 1.5 cm diameter coin
⇒ $\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{2}}\text{h}=\text{n}\times \text{ }\!\!\pi\!\!\text{ }{{\left( \dfrac{1.5}{2} \right)}^{2}}\times 0.2$
the volume of right circular cylinder = n × volume of 1.5 cm diameter coin.
Where, volume of right circular cylinder = $\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{2}}\text{h}$
Where r = radius and h = height
Complete step by step solution: Given that,
⇒ diameter of coin = 1.5 cm.
⇒ height of cylinder = 10 cm.
⇒ diameter of cylinder = 4.5 cm.
Now,
Let n be the number of 1.5 cm diameter coins required to form a right circular cylinder of height 10 cm and diameter 4.5 cm.
Now,
According to the question,
⇒ The volume of right circular cylinder = n × volume of 1.5 cm diameter coin
⇒ We know that,
Volume of cylinder = $\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{2}}\text{h}$.
Where r = radius
h = height of cylinder.
Now,
$\Rightarrow \text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{2}}\text{h}\,\text{=}\,\text{n}\times \text{ }\!\!\pi\!\!\text{ }\,{{\left( \dfrac{1.5}{2} \right)}^{2}}\times 0.2$
⇒ After dividing, we get,
⇒ $\text{n}=\dfrac{\text{ }\!\!\pi\!\!\text{ }{{\left( \dfrac{4.5}{2} \right)}^{2}}\times 10}{\text{ }\!\!\pi\!\!\text{ }{{\left( \dfrac{1.5}{2} \right)}^{2}}\times \dfrac{2}{10}}$
After dividing, we get
⇒ n = 9 × 10 × 5
⇒ n = 450
Note: in this type of question we know about the right circula cylinder that is a cylinder with the bases circular and with the axis joining the two centers of the bases perpendicular to the planes of the two bases. Here, we know that volume of right circular cylinder = $\pi\text{r}^{2}\text{h}$ and then take volume of right circular cylinder = n × volume of 1.5 cm diameter coin
⇒ $\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{2}}\text{h}=\text{n}\times \text{ }\!\!\pi\!\!\text{ }{{\left( \dfrac{1.5}{2} \right)}^{2}}\times 0.2$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE