Answer
Verified
420.3k+ views
Hint: Here we will find the midpoint of given points using related formulas. Here we will find the midpoint for all points that means $AB$ and $BC$ and $CA$ then finally we will find the coordinate points using some rules and some formula. Then finally we will get the vertices of the given points.
Formula used:
Finding the midpoint of given point $ = \dfrac{{\;{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}$
Complete step-by-step answer:
Let $A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$ be the vertices of $\Delta ABC,$ let $P(1,2),Q(0, - 1)$ and $R(2, - 1)$ be the mid-points of sides $BC,AC$ and $AB$
Since, $P$ is the mid-point of $AB.$
$A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$
$\therefore \dfrac{{{x_1} + {x_2}}}{2} = 1$ and $\dfrac{{{y_1} + {y_2}}}{2} = 2$
$ \Rightarrow {x_1} + {x_2} = 2 - - - - - - (1)$
$ \Rightarrow {y_2} + {y_3} = 4 - - - - - - (2)$
$Q(0,1)$ is the mid-point of $BC$
$\therefore \dfrac{{{x_2} + {x_3}}}{2} = 0$ and $\dfrac{{{y_2} + {y_3}}}{2} = 1$
$ \Rightarrow {x_2} + {x_3} = 0 - - - - - - (3)$
$ \Rightarrow {y_2} + {y_3} = 2 - - - - - - (4)$
$R(1,0)$ is the mid-point of $AC$
$\therefore \dfrac{{{x_3} + {x_1}}}{2} = 1$ and $\dfrac{{({y_3} + {y_1})}}{2} = 0$
$\Rightarrow {x_3} + {x_1} = 2 - - - - - - - (5)$
$\Rightarrow {y_3} + {y_1} = 0 - - - - - - (6)$
On adding equation $1,3\& 5$
$
2({x_1} + {x_2} + {x_3}) = 4 \\
{x_1} + {x_2} + {x_3} = \dfrac{4}{2} \\
{x_1} + {x_2} + {x_3} = 2 - - - - - - (7) \\
$
On adding equation $2,4\& 6$
$
2({y_1} + {y_2} + {y_3}) = 6 \\
{y_1} + {y_2} + {y_3} = 3 - - - - - - (6) \\
$
Subtracting equation $(1)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{x_1} + {x_2}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_3} = 0 \\
$
Subtracting equation $(3)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{\text{ + }}{{\text{x}}_2}{\text{ + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_1} = 2 \\
$
Subtracting equation $(5)$ from equation $(7)$
\[
{x_1} + {x_2} + {x_3} = 2 \\
{{\text{x}}_1}{\text{ + + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {x_2} = 0 \\
\]
Subtracting equation $(2)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + }}{{\text{y}}_2}{\text{ = 4}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_3} = - 1 \\
$
Subtracting equation $(4)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{\text{ + }}{{\text{y}}_2}{\text{ + }}{{\text{y}}_3}{\text{ = 2}} \\
{\text{ ( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_1} = 1 \\
$
Subtracting equation $(6)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + + }}{{\text{y}}_3}{\text{ = 0}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_2} = 3 \\
$
The value of ${x_1} = 2,{x_2} = 0$ and ${x_3} = 0$
The value of ${y_1} = 1,{y_2} = 3$ and ${y_3} = - 1$
Hence, the coordinates of the vertices of the $\Delta ABC$ are $A(2,1),B(0,3),C(0, - 1).$
Additional information:
The medial triangle or midpoint triangle of a triangle \[ABC\] is the triangle with vertices at the midpoints of the triangle's sides \[AB,{\text{ }}AC\] and \[BC.\] If you draw lines from each corner (or vertex) of a triangle to the midpoint of the opposite sides, then those three lines meet at a center, or centroid, of the triangle. The centroid is the triangle's center of gravity, where the triangle balances evenly.
Note:
Here Measure the distance between the two end points, and divide the result by \[2.\] This distance from either end is the midpoint of that line. Alternatively, add the two $x$ coordinates of the endpoints and divide by $2.$Do the same for the $y$ coordinates.
Formula used:
Finding the midpoint of given point $ = \dfrac{{\;{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}$
Complete step-by-step answer:
Let $A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$ be the vertices of $\Delta ABC,$ let $P(1,2),Q(0, - 1)$ and $R(2, - 1)$ be the mid-points of sides $BC,AC$ and $AB$
Since, $P$ is the mid-point of $AB.$
$A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$
$\therefore \dfrac{{{x_1} + {x_2}}}{2} = 1$ and $\dfrac{{{y_1} + {y_2}}}{2} = 2$
$ \Rightarrow {x_1} + {x_2} = 2 - - - - - - (1)$
$ \Rightarrow {y_2} + {y_3} = 4 - - - - - - (2)$
$Q(0,1)$ is the mid-point of $BC$
$\therefore \dfrac{{{x_2} + {x_3}}}{2} = 0$ and $\dfrac{{{y_2} + {y_3}}}{2} = 1$
$ \Rightarrow {x_2} + {x_3} = 0 - - - - - - (3)$
$ \Rightarrow {y_2} + {y_3} = 2 - - - - - - (4)$
$R(1,0)$ is the mid-point of $AC$
$\therefore \dfrac{{{x_3} + {x_1}}}{2} = 1$ and $\dfrac{{({y_3} + {y_1})}}{2} = 0$
$\Rightarrow {x_3} + {x_1} = 2 - - - - - - - (5)$
$\Rightarrow {y_3} + {y_1} = 0 - - - - - - (6)$
On adding equation $1,3\& 5$
$
2({x_1} + {x_2} + {x_3}) = 4 \\
{x_1} + {x_2} + {x_3} = \dfrac{4}{2} \\
{x_1} + {x_2} + {x_3} = 2 - - - - - - (7) \\
$
On adding equation $2,4\& 6$
$
2({y_1} + {y_2} + {y_3}) = 6 \\
{y_1} + {y_2} + {y_3} = 3 - - - - - - (6) \\
$
Subtracting equation $(1)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{x_1} + {x_2}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_3} = 0 \\
$
Subtracting equation $(3)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{\text{ + }}{{\text{x}}_2}{\text{ + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_1} = 2 \\
$
Subtracting equation $(5)$ from equation $(7)$
\[
{x_1} + {x_2} + {x_3} = 2 \\
{{\text{x}}_1}{\text{ + + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {x_2} = 0 \\
\]
Subtracting equation $(2)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + }}{{\text{y}}_2}{\text{ = 4}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_3} = - 1 \\
$
Subtracting equation $(4)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{\text{ + }}{{\text{y}}_2}{\text{ + }}{{\text{y}}_3}{\text{ = 2}} \\
{\text{ ( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_1} = 1 \\
$
Subtracting equation $(6)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + + }}{{\text{y}}_3}{\text{ = 0}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_2} = 3 \\
$
The value of ${x_1} = 2,{x_2} = 0$ and ${x_3} = 0$
The value of ${y_1} = 1,{y_2} = 3$ and ${y_3} = - 1$
Hence, the coordinates of the vertices of the $\Delta ABC$ are $A(2,1),B(0,3),C(0, - 1).$
Additional information:
The medial triangle or midpoint triangle of a triangle \[ABC\] is the triangle with vertices at the midpoints of the triangle's sides \[AB,{\text{ }}AC\] and \[BC.\] If you draw lines from each corner (or vertex) of a triangle to the midpoint of the opposite sides, then those three lines meet at a center, or centroid, of the triangle. The centroid is the triangle's center of gravity, where the triangle balances evenly.
Note:
Here Measure the distance between the two end points, and divide the result by \[2.\] This distance from either end is the midpoint of that line. Alternatively, add the two $x$ coordinates of the endpoints and divide by $2.$Do the same for the $y$ coordinates.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE