
If ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$ , then the sum of digits of x is
A. 3
B. 6
C. 9
D. 10
Answer
575.7k+ views
Hint: As we know that ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we will apply the same in the given equation taking both sides of the expression exponent equivalent to the base of the logarithm function. Applying this method we’ll again be in the same situation so we’ll apply it again by taking both sides of the expression, exponent equivalent to the base of the logarithm function.
Complete step by step answer:
Given data: ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Now, solving for x in the equation ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
It is well known that,
${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$
Now, ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Taking both the sides as the exponent of 2, we get
\[{{\text{2}}^{{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x))}}}}{\text{ = }}{{\text{2}}^{\text{3}}}\]
Using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[ \Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8}}\]
On simplification we get,
\[
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Now, taking both the sides as the exponent of 3, we get
\[{{\text{3}}^{{\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x)}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Again, using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
The digits in x i.e. 81 are 8 and 1, and their sum is 9.
Therefore, option (C) 9 is the correct option.
Note: An alternative method for doing this solution can be
It is well known that if
${\text{lo}}{{\text{g}}_{\text{x}}}{\text{y = a}}$ then,
${\text{y = }}{{\text{x}}^{\text{a}}}$
Applying this to the given equation, we’ll get
\[
{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}} \\
\Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = }}{{\text{2}}^{\text{3}}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Again, applying the same formula
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
Therefore the sum of digits in x is 9
Complete step by step answer:
Given data: ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Now, solving for x in the equation ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
It is well known that,
${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$
Now, ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Taking both the sides as the exponent of 2, we get
\[{{\text{2}}^{{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x))}}}}{\text{ = }}{{\text{2}}^{\text{3}}}\]
Using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[ \Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8}}\]
On simplification we get,
\[
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Now, taking both the sides as the exponent of 3, we get
\[{{\text{3}}^{{\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x)}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Again, using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
The digits in x i.e. 81 are 8 and 1, and their sum is 9.
Therefore, option (C) 9 is the correct option.
Note: An alternative method for doing this solution can be
It is well known that if
${\text{lo}}{{\text{g}}_{\text{x}}}{\text{y = a}}$ then,
${\text{y = }}{{\text{x}}^{\text{a}}}$
Applying this to the given equation, we’ll get
\[
{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}} \\
\Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = }}{{\text{2}}^{\text{3}}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Again, applying the same formula
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
Therefore the sum of digits in x is 9
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

