
If ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$ , then the sum of digits of x is
A. 3
B. 6
C. 9
D. 10
Answer
592.5k+ views
Hint: As we know that ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we will apply the same in the given equation taking both sides of the expression exponent equivalent to the base of the logarithm function. Applying this method we’ll again be in the same situation so we’ll apply it again by taking both sides of the expression, exponent equivalent to the base of the logarithm function.
Complete step by step answer:
Given data: ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Now, solving for x in the equation ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
It is well known that,
${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$
Now, ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Taking both the sides as the exponent of 2, we get
\[{{\text{2}}^{{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x))}}}}{\text{ = }}{{\text{2}}^{\text{3}}}\]
Using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[ \Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8}}\]
On simplification we get,
\[
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Now, taking both the sides as the exponent of 3, we get
\[{{\text{3}}^{{\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x)}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Again, using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
The digits in x i.e. 81 are 8 and 1, and their sum is 9.
Therefore, option (C) 9 is the correct option.
Note: An alternative method for doing this solution can be
It is well known that if
${\text{lo}}{{\text{g}}_{\text{x}}}{\text{y = a}}$ then,
${\text{y = }}{{\text{x}}^{\text{a}}}$
Applying this to the given equation, we’ll get
\[
{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}} \\
\Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = }}{{\text{2}}^{\text{3}}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Again, applying the same formula
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
Therefore the sum of digits in x is 9
Complete step by step answer:
Given data: ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Now, solving for x in the equation ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
It is well known that,
${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$
Now, ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Taking both the sides as the exponent of 2, we get
\[{{\text{2}}^{{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x))}}}}{\text{ = }}{{\text{2}}^{\text{3}}}\]
Using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[ \Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8}}\]
On simplification we get,
\[
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Now, taking both the sides as the exponent of 3, we get
\[{{\text{3}}^{{\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x)}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Again, using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
The digits in x i.e. 81 are 8 and 1, and their sum is 9.
Therefore, option (C) 9 is the correct option.
Note: An alternative method for doing this solution can be
It is well known that if
${\text{lo}}{{\text{g}}_{\text{x}}}{\text{y = a}}$ then,
${\text{y = }}{{\text{x}}^{\text{a}}}$
Applying this to the given equation, we’ll get
\[
{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}} \\
\Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = }}{{\text{2}}^{\text{3}}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Again, applying the same formula
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
Therefore the sum of digits in x is 9
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

