
If ${{\log }_{12}}18=\alpha $ and ${{\log }_{24}}54=\beta $, then the value of $\alpha \beta +\left( \alpha -\beta \right)$ will be:
(a) 2
(b) ${{\log }_{12}}24$
(c) 1
(d) none of these
Answer
619.8k+ views
Hint: Use Base change rule to convert ${{\log }_{24}}54$ and ${{\log }_{12}}18$ into common $\log $ that is log to the base 10. Also, break 18 and 54 into their prime factors and use the product rule of log to simplify the value. Use ${{\log }_{10}}3\approx 0.48$ and ${{\log }_{10}}2\approx 0.3$, and substitute these values in the simplified equation of $\alpha $ and $\beta $.
Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
Complete step-by-step answer:
Now,$\alpha =$${{\log }_{12}}18=\dfrac{{{\log }_{10}}18}{{{\log }_{10}}12}$$=\dfrac{{{\log }_{10}}({{3}^{2}}\times 2)}{{{\log }_{10}}({{2}^{2}}\times 3)}=\dfrac{2\log 3+\log 2}{2\log 2+\log 3}$
and, $\beta ={{\log }_{24}}54=\dfrac{{{\log }_{10}}54}{{{\log }_{10}}24}=\dfrac{{{\log }_{10}}({{3}^{3}}\times 2)}{{{\log }_{10}}({{2}^{3}}\times 3)}=\dfrac{3{{\log }_{10}}3+{{\log }_{10}}2}{3{{\log }_{10}}2+{{\log }_{10}}3}$
Substituting the value of ${{\log }_{10}}2$ and ${{\log }_{10}}3$ in the expression of $\alpha \text{ and }\beta $, we get,
$\alpha =\dfrac{2\times 0.48+0.3}{2\times 0.3+0.48}\approx 1.167$
$\beta =\dfrac{3\times 0.48+0.3}{3\times 0.3+0.48}\approx 1.261$
Now, the given expression
$\begin{align}
& =\alpha \beta +(\alpha -\beta ) \\
& =(1.167\times 1.261)+(1.167-1.261) \\
& =1.471-0.094 \\
& =1.377 \\
\end{align}$
Now, calculate, ${{\log }_{12}}24=\dfrac{{{\log }_{10}}24}{{{\log }_{10}}12}=\dfrac{3{{\log }_{10}}2+{{\log }_{10}}3}{2{{\log }_{10}}2+{{\log }_{10}}3}=1.279$
Hence, we see that no option is correct. Therefore, the correct option is (d).
Note: Generally we have to remember the values of common logarithm having argument 1 to 10. Here, $\alpha $ and $\beta $ cannot be further simplified, so, we have to substitute the value of ${{\log }_{10}}2$ and ${{\log }_{10}}3$ in the expression to get the answer.
Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
Complete step-by-step answer:
Now,$\alpha =$${{\log }_{12}}18=\dfrac{{{\log }_{10}}18}{{{\log }_{10}}12}$$=\dfrac{{{\log }_{10}}({{3}^{2}}\times 2)}{{{\log }_{10}}({{2}^{2}}\times 3)}=\dfrac{2\log 3+\log 2}{2\log 2+\log 3}$
and, $\beta ={{\log }_{24}}54=\dfrac{{{\log }_{10}}54}{{{\log }_{10}}24}=\dfrac{{{\log }_{10}}({{3}^{3}}\times 2)}{{{\log }_{10}}({{2}^{3}}\times 3)}=\dfrac{3{{\log }_{10}}3+{{\log }_{10}}2}{3{{\log }_{10}}2+{{\log }_{10}}3}$
Substituting the value of ${{\log }_{10}}2$ and ${{\log }_{10}}3$ in the expression of $\alpha \text{ and }\beta $, we get,
$\alpha =\dfrac{2\times 0.48+0.3}{2\times 0.3+0.48}\approx 1.167$
$\beta =\dfrac{3\times 0.48+0.3}{3\times 0.3+0.48}\approx 1.261$
Now, the given expression
$\begin{align}
& =\alpha \beta +(\alpha -\beta ) \\
& =(1.167\times 1.261)+(1.167-1.261) \\
& =1.471-0.094 \\
& =1.377 \\
\end{align}$
Now, calculate, ${{\log }_{12}}24=\dfrac{{{\log }_{10}}24}{{{\log }_{10}}12}=\dfrac{3{{\log }_{10}}2+{{\log }_{10}}3}{2{{\log }_{10}}2+{{\log }_{10}}3}=1.279$
Hence, we see that no option is correct. Therefore, the correct option is (d).
Note: Generally we have to remember the values of common logarithm having argument 1 to 10. Here, $\alpha $ and $\beta $ cannot be further simplified, so, we have to substitute the value of ${{\log }_{10}}2$ and ${{\log }_{10}}3$ in the expression to get the answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

