If ${{\log }_{12}}18=\alpha $ and ${{\log }_{24}}54=\beta $, then the value of $\alpha \beta +\left( \alpha -\beta \right)$ will be:
(a) 2
(b) ${{\log }_{12}}24$
(c) 1
(d) none of these
Answer
362.1k+ views
Hint: Use Base change rule to convert ${{\log }_{24}}54$ and ${{\log }_{12}}18$ into common $\log $ that is log to the base 10. Also, break 18 and 54 into their prime factors and use the product rule of log to simplify the value. Use ${{\log }_{10}}3\approx 0.48$ and ${{\log }_{10}}2\approx 0.3$, and substitute these values in the simplified equation of $\alpha $ and $\beta $.
Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
Complete step-by-step answer:
Now,$\alpha =$${{\log }_{12}}18=\dfrac{{{\log }_{10}}18}{{{\log }_{10}}12}$$=\dfrac{{{\log }_{10}}({{3}^{2}}\times 2)}{{{\log }_{10}}({{2}^{2}}\times 3)}=\dfrac{2\log 3+\log 2}{2\log 2+\log 3}$
and, $\beta ={{\log }_{24}}54=\dfrac{{{\log }_{10}}54}{{{\log }_{10}}24}=\dfrac{{{\log }_{10}}({{3}^{3}}\times 2)}{{{\log }_{10}}({{2}^{3}}\times 3)}=\dfrac{3{{\log }_{10}}3+{{\log }_{10}}2}{3{{\log }_{10}}2+{{\log }_{10}}3}$
Substituting the value of ${{\log }_{10}}2$ and ${{\log }_{10}}3$ in the expression of $\alpha \text{ and }\beta $, we get,
$\alpha =\dfrac{2\times 0.48+0.3}{2\times 0.3+0.48}\approx 1.167$
$\beta =\dfrac{3\times 0.48+0.3}{3\times 0.3+0.48}\approx 1.261$
Now, the given expression
$\begin{align}
& =\alpha \beta +(\alpha -\beta ) \\
& =(1.167\times 1.261)+(1.167-1.261) \\
& =1.471-0.094 \\
& =1.377 \\
\end{align}$
Now, calculate, ${{\log }_{12}}24=\dfrac{{{\log }_{10}}24}{{{\log }_{10}}12}=\dfrac{3{{\log }_{10}}2+{{\log }_{10}}3}{2{{\log }_{10}}2+{{\log }_{10}}3}=1.279$
Hence, we see that no option is correct. Therefore, the correct option is (d).
Note: Generally we have to remember the values of common logarithm having argument 1 to 10. Here, $\alpha $ and $\beta $ cannot be further simplified, so, we have to substitute the value of ${{\log }_{10}}2$ and ${{\log }_{10}}3$ in the expression to get the answer.
Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
Complete step-by-step answer:
Now,$\alpha =$${{\log }_{12}}18=\dfrac{{{\log }_{10}}18}{{{\log }_{10}}12}$$=\dfrac{{{\log }_{10}}({{3}^{2}}\times 2)}{{{\log }_{10}}({{2}^{2}}\times 3)}=\dfrac{2\log 3+\log 2}{2\log 2+\log 3}$
and, $\beta ={{\log }_{24}}54=\dfrac{{{\log }_{10}}54}{{{\log }_{10}}24}=\dfrac{{{\log }_{10}}({{3}^{3}}\times 2)}{{{\log }_{10}}({{2}^{3}}\times 3)}=\dfrac{3{{\log }_{10}}3+{{\log }_{10}}2}{3{{\log }_{10}}2+{{\log }_{10}}3}$
Substituting the value of ${{\log }_{10}}2$ and ${{\log }_{10}}3$ in the expression of $\alpha \text{ and }\beta $, we get,
$\alpha =\dfrac{2\times 0.48+0.3}{2\times 0.3+0.48}\approx 1.167$
$\beta =\dfrac{3\times 0.48+0.3}{3\times 0.3+0.48}\approx 1.261$
Now, the given expression
$\begin{align}
& =\alpha \beta +(\alpha -\beta ) \\
& =(1.167\times 1.261)+(1.167-1.261) \\
& =1.471-0.094 \\
& =1.377 \\
\end{align}$
Now, calculate, ${{\log }_{12}}24=\dfrac{{{\log }_{10}}24}{{{\log }_{10}}12}=\dfrac{3{{\log }_{10}}2+{{\log }_{10}}3}{2{{\log }_{10}}2+{{\log }_{10}}3}=1.279$
Hence, we see that no option is correct. Therefore, the correct option is (d).
Note: Generally we have to remember the values of common logarithm having argument 1 to 10. Here, $\alpha $ and $\beta $ cannot be further simplified, so, we have to substitute the value of ${{\log }_{10}}2$ and ${{\log }_{10}}3$ in the expression to get the answer.
Last updated date: 01st Oct 2023
•
Total views: 362.1k
•
Views today: 9.62k
Recently Updated Pages
What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the past tense of read class 10 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

10 examples of evaporation in daily life with explanations

How many crores make 10 million class 7 maths CBSE

Number of Prime between 1 to 100 is class 6 maths CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

What is the past participle of wear Is it worn or class 10 english CBSE
