
If l, m are real $l\ne m$ then the roots of the equation $\left( l-m \right){{x}^{2}}-5\left( l+m \right)x-2\left( l-m \right)=0$ are:
(a) Real and equal
(b) Non-real and complex
(c) Real and unequal
(d) None of these
Answer
601.8k+ views
Hint: For solving this problem we will use the direct formulae of the discriminant of the quadratic equation and we can find the nature of the roots of the quadratic equation.
Complete step-by-step answer:
Given:
We have a quadratic equation $\left( l-m \right){{x}^{2}}-5\left( l+m \right)x-2\left( l-m \right)=0$ where $l$ and $m$ are real and $l\ne m$ .
Now, before we proceed we should see the formula of the discriminant of the quadratic equation and its impact on the roots of the quadratic equation. Formulae are given below:
Quadratic equation: $a{{x}^{2}}+bx+c=0$ . Then, the roots of the equation are: $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
The discriminant of the quadratic equation $=D={{b}^{2}}-4ac$ .
Now, if $D>0$ then, roots will be real and distinct. If $D=0$ then, roots will be real and equal. If $D<0$ then, roots will be unequal and not real.
Now, in the question we have: $\left( l-m \right){{x}^{2}}-5\left( l+m \right)x-2\left( l-m \right)=0$
So, $a=\left( l-m \right)$ , $b=-5\left( l+m \right)$ and $c=-2\left( l-m \right)$
Then, $\begin{align}
& D={{b}^{2}}-4ac={{\left( -5\left( l+m \right) \right)}^{2}}-4\left( l-m \right)\times \left( -2\left( l-m \right) \right) \\
& \Rightarrow D=25{{\left( l+m \right)}^{2}}+8{{\left( l-m \right)}^{2}} \\
\end{align}$
Thus, the discriminant of the given equation will be $D=25{{\left( l+m \right)}^{2}}+8{{\left( l-m \right)}^{2}}$
Now, in the above expression of discriminant, we can say that both terms ${{\left( l+m \right)}^{2}}$ and ${{\left( l-m \right)}^{2}}$ are greater than zero. Thus, the discriminant will be greater than zero $\left( D>0 \right)$ .
Now, as we know that when the discriminant of the quadratic equation is greater than 0 then roots will be real and unequal.
Thus, the roots of $\left( l-m \right){{x}^{2}}-5\left( l+m \right)x-2\left( l-m \right)=0$ will be real and unequal.
Hence, (c) is the correct option.
Note: The question was very easy to solve only we should know how we can tell about the nature of roots from the value of discriminant of the quadratic equation. But the student should avoid calculation mistakes in calculation of discriminant and apply the conditions correctly to get the correct answer.
Complete step-by-step answer:
Given:
We have a quadratic equation $\left( l-m \right){{x}^{2}}-5\left( l+m \right)x-2\left( l-m \right)=0$ where $l$ and $m$ are real and $l\ne m$ .
Now, before we proceed we should see the formula of the discriminant of the quadratic equation and its impact on the roots of the quadratic equation. Formulae are given below:
Quadratic equation: $a{{x}^{2}}+bx+c=0$ . Then, the roots of the equation are: $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
The discriminant of the quadratic equation $=D={{b}^{2}}-4ac$ .
Now, if $D>0$ then, roots will be real and distinct. If $D=0$ then, roots will be real and equal. If $D<0$ then, roots will be unequal and not real.
Now, in the question we have: $\left( l-m \right){{x}^{2}}-5\left( l+m \right)x-2\left( l-m \right)=0$
So, $a=\left( l-m \right)$ , $b=-5\left( l+m \right)$ and $c=-2\left( l-m \right)$
Then, $\begin{align}
& D={{b}^{2}}-4ac={{\left( -5\left( l+m \right) \right)}^{2}}-4\left( l-m \right)\times \left( -2\left( l-m \right) \right) \\
& \Rightarrow D=25{{\left( l+m \right)}^{2}}+8{{\left( l-m \right)}^{2}} \\
\end{align}$
Thus, the discriminant of the given equation will be $D=25{{\left( l+m \right)}^{2}}+8{{\left( l-m \right)}^{2}}$
Now, in the above expression of discriminant, we can say that both terms ${{\left( l+m \right)}^{2}}$ and ${{\left( l-m \right)}^{2}}$ are greater than zero. Thus, the discriminant will be greater than zero $\left( D>0 \right)$ .
Now, as we know that when the discriminant of the quadratic equation is greater than 0 then roots will be real and unequal.
Thus, the roots of $\left( l-m \right){{x}^{2}}-5\left( l+m \right)x-2\left( l-m \right)=0$ will be real and unequal.
Hence, (c) is the correct option.
Note: The question was very easy to solve only we should know how we can tell about the nature of roots from the value of discriminant of the quadratic equation. But the student should avoid calculation mistakes in calculation of discriminant and apply the conditions correctly to get the correct answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

