Answer
Verified
398.4k+ views
Hint: In this question, we are given an unknown quantity k and we are also given an algebraic expression in terms of this unknown quantity. Using the properties of k, we have to determine which of the options satisfies the given expression. We are given that k is an even positive integer. So, using this information, we will write the given expression and find out the correct answer.
Complete step-by-step solution:
We are given that k is an even positive integer, so k is a multiple of 2.
So $k = 2n$ where n is a positive integer.
Putting this value in the given equation, we get –
$
{k^2} + 2k = {(2n)^2} + 2(2n) \\
\Rightarrow {k^2} + 2k = 4{n^2} + 4n \\
\Rightarrow {k^2} + 2k = 4({n^2} + n) \\
$
We see that ${k^2} + 2k$ is a multiple of 4 so it is divisible by 4, but we cannot say anything about its divisibility by 8 and 24.
Hence, option (C) is the correct answer.
Note: Real numbers are those numbers that can be shown on a number line, integers are a type of real numbers, these are defined as the numbers that are not in fractional or decimal form, for example, -4,0, 5,etc. are integers. There are two types of numbers, positive numbers and negative numbers, the numbers that are on the left side of the zero on the number line are called negative numbers and the numbers that are on the right side of the zero are known as positive numbers. And even numbers are those that are divisible by 2 or we can also say that even numbers are those numbers that are a multiple of 2.
Complete step-by-step solution:
We are given that k is an even positive integer, so k is a multiple of 2.
So $k = 2n$ where n is a positive integer.
Putting this value in the given equation, we get –
$
{k^2} + 2k = {(2n)^2} + 2(2n) \\
\Rightarrow {k^2} + 2k = 4{n^2} + 4n \\
\Rightarrow {k^2} + 2k = 4({n^2} + n) \\
$
We see that ${k^2} + 2k$ is a multiple of 4 so it is divisible by 4, but we cannot say anything about its divisibility by 8 and 24.
Hence, option (C) is the correct answer.
Note: Real numbers are those numbers that can be shown on a number line, integers are a type of real numbers, these are defined as the numbers that are not in fractional or decimal form, for example, -4,0, 5,etc. are integers. There are two types of numbers, positive numbers and negative numbers, the numbers that are on the left side of the zero on the number line are called negative numbers and the numbers that are on the right side of the zero are known as positive numbers. And even numbers are those that are divisible by 2 or we can also say that even numbers are those numbers that are a multiple of 2.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE