If $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ , determine the value of $ \left( f.g \right)\left( -1 \right) $ if it is given $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ ?
(a) 36
(b) 42
(c) 32
(d) –36
Answer
Verified
451.8k+ views
Hint: We start solving the problem by checking the domains of both the given functions f and g so that $ x=-1 $ is present in domains of both functions f and g. We then find the function $ \left( f.g \right)\left( x \right) $ by making use of the fact that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ . We then substitute –1 in the obtained function $ \left( f.g \right)\left( x \right) $. We then make the necessary calculations to get the required value of $ \left( f.g \right)\left( -1 \right) $.
Complete step by step answer:
According to the problem, we are given that the function f and g are defined as $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ . We need to find the value of $ \left( f.g \right)\left( -1 \right) $ .
We can see that the functions f and g are polynomials which means that the domain of both the functions are R. This means that there is no problem to find the function $ \left( f.g \right)\left( x \right) $.
Now, we know that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ .
$ \Rightarrow \left( f.g \right)\left( x \right)=\left( 12{{x}^{5}} \right).\left( -3{{x}^{2}} \right) $.
$ \Rightarrow \left( f.g \right)\left( x \right)=-36{{x}^{7}} $ ---(1).
Now, let us substitute 1 in place of x in equation (1) to find the value of $ \left( f.g \right)\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36{{\left( -1 \right)}^{7}} $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=36 $ .
So, we have found the value of $ \left( f.g \right)\left( -1 \right) $ as 36.
$ \therefore $ The correct option for the given problem is (a).
Note:
Whenever we get this type of problems, we first check the domains of both the given functions as the values of the functions $ \dfrac{f}{g} $, $ fg $, $ \sqrt{f} $ etc can only be found in the common domain of both the given functions. We should not make calculation mistakes while solving this problem. Similarly, we can expect problems to find the value of $ \sqrt{fg}\left( -1 \right) $ .
Complete step by step answer:
According to the problem, we are given that the function f and g are defined as $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ . We need to find the value of $ \left( f.g \right)\left( -1 \right) $ .
We can see that the functions f and g are polynomials which means that the domain of both the functions are R. This means that there is no problem to find the function $ \left( f.g \right)\left( x \right) $.
Now, we know that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ .
$ \Rightarrow \left( f.g \right)\left( x \right)=\left( 12{{x}^{5}} \right).\left( -3{{x}^{2}} \right) $.
$ \Rightarrow \left( f.g \right)\left( x \right)=-36{{x}^{7}} $ ---(1).
Now, let us substitute 1 in place of x in equation (1) to find the value of $ \left( f.g \right)\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36{{\left( -1 \right)}^{7}} $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=36 $ .
So, we have found the value of $ \left( f.g \right)\left( -1 \right) $ as 36.
$ \therefore $ The correct option for the given problem is (a).
Note:
Whenever we get this type of problems, we first check the domains of both the given functions as the values of the functions $ \dfrac{f}{g} $, $ fg $, $ \sqrt{f} $ etc can only be found in the common domain of both the given functions. We should not make calculation mistakes while solving this problem. Similarly, we can expect problems to find the value of $ \sqrt{fg}\left( -1 \right) $ .
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
The allots symbols to the recognized political parties class 10 social science CBSE
Find the mode of the data using an empirical formula class 10 maths CBSE