
If $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ , determine the value of $ \left( f.g \right)\left( -1 \right) $ if it is given $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ ?
(a) 36
(b) 42
(c) 32
(d) –36
Answer
565.2k+ views
Hint: We start solving the problem by checking the domains of both the given functions f and g so that $ x=-1 $ is present in domains of both functions f and g. We then find the function $ \left( f.g \right)\left( x \right) $ by making use of the fact that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ . We then substitute –1 in the obtained function $ \left( f.g \right)\left( x \right) $. We then make the necessary calculations to get the required value of $ \left( f.g \right)\left( -1 \right) $.
Complete step by step answer:
According to the problem, we are given that the function f and g are defined as $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ . We need to find the value of $ \left( f.g \right)\left( -1 \right) $ .
We can see that the functions f and g are polynomials which means that the domain of both the functions are R. This means that there is no problem to find the function $ \left( f.g \right)\left( x \right) $.
Now, we know that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ .
$ \Rightarrow \left( f.g \right)\left( x \right)=\left( 12{{x}^{5}} \right).\left( -3{{x}^{2}} \right) $.
$ \Rightarrow \left( f.g \right)\left( x \right)=-36{{x}^{7}} $ ---(1).
Now, let us substitute 1 in place of x in equation (1) to find the value of $ \left( f.g \right)\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36{{\left( -1 \right)}^{7}} $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=36 $ .
So, we have found the value of $ \left( f.g \right)\left( -1 \right) $ as 36.
$ \therefore $ The correct option for the given problem is (a).
Note:
Whenever we get this type of problems, we first check the domains of both the given functions as the values of the functions $ \dfrac{f}{g} $, $ fg $, $ \sqrt{f} $ etc can only be found in the common domain of both the given functions. We should not make calculation mistakes while solving this problem. Similarly, we can expect problems to find the value of $ \sqrt{fg}\left( -1 \right) $ .
Complete step by step answer:
According to the problem, we are given that the function f and g are defined as $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ . We need to find the value of $ \left( f.g \right)\left( -1 \right) $ .
We can see that the functions f and g are polynomials which means that the domain of both the functions are R. This means that there is no problem to find the function $ \left( f.g \right)\left( x \right) $.
Now, we know that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ .
$ \Rightarrow \left( f.g \right)\left( x \right)=\left( 12{{x}^{5}} \right).\left( -3{{x}^{2}} \right) $.
$ \Rightarrow \left( f.g \right)\left( x \right)=-36{{x}^{7}} $ ---(1).
Now, let us substitute 1 in place of x in equation (1) to find the value of $ \left( f.g \right)\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36{{\left( -1 \right)}^{7}} $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=36 $ .
So, we have found the value of $ \left( f.g \right)\left( -1 \right) $ as 36.
$ \therefore $ The correct option for the given problem is (a).
Note:
Whenever we get this type of problems, we first check the domains of both the given functions as the values of the functions $ \dfrac{f}{g} $, $ fg $, $ \sqrt{f} $ etc can only be found in the common domain of both the given functions. We should not make calculation mistakes while solving this problem. Similarly, we can expect problems to find the value of $ \sqrt{fg}\left( -1 \right) $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

