
If $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ , determine the value of $ \left( f.g \right)\left( -1 \right) $ if it is given $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ ?
(a) 36
(b) 42
(c) 32
(d) –36
Answer
564.9k+ views
Hint: We start solving the problem by checking the domains of both the given functions f and g so that $ x=-1 $ is present in domains of both functions f and g. We then find the function $ \left( f.g \right)\left( x \right) $ by making use of the fact that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ . We then substitute –1 in the obtained function $ \left( f.g \right)\left( x \right) $. We then make the necessary calculations to get the required value of $ \left( f.g \right)\left( -1 \right) $.
Complete step by step answer:
According to the problem, we are given that the function f and g are defined as $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ . We need to find the value of $ \left( f.g \right)\left( -1 \right) $ .
We can see that the functions f and g are polynomials which means that the domain of both the functions are R. This means that there is no problem to find the function $ \left( f.g \right)\left( x \right) $.
Now, we know that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ .
$ \Rightarrow \left( f.g \right)\left( x \right)=\left( 12{{x}^{5}} \right).\left( -3{{x}^{2}} \right) $.
$ \Rightarrow \left( f.g \right)\left( x \right)=-36{{x}^{7}} $ ---(1).
Now, let us substitute 1 in place of x in equation (1) to find the value of $ \left( f.g \right)\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36{{\left( -1 \right)}^{7}} $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=36 $ .
So, we have found the value of $ \left( f.g \right)\left( -1 \right) $ as 36.
$ \therefore $ The correct option for the given problem is (a).
Note:
Whenever we get this type of problems, we first check the domains of both the given functions as the values of the functions $ \dfrac{f}{g} $, $ fg $, $ \sqrt{f} $ etc can only be found in the common domain of both the given functions. We should not make calculation mistakes while solving this problem. Similarly, we can expect problems to find the value of $ \sqrt{fg}\left( -1 \right) $ .
Complete step by step answer:
According to the problem, we are given that the function f and g are defined as $ f\left( x \right)=12{{x}^{5}} $ and $ g\left( x \right)=-3{{x}^{2}} $ . We need to find the value of $ \left( f.g \right)\left( -1 \right) $ .
We can see that the functions f and g are polynomials which means that the domain of both the functions are R. This means that there is no problem to find the function $ \left( f.g \right)\left( x \right) $.
Now, we know that $ \left( f.g \right)\left( x \right)=f\left( x \right).g\left( x \right) $ .
$ \Rightarrow \left( f.g \right)\left( x \right)=\left( 12{{x}^{5}} \right).\left( -3{{x}^{2}} \right) $.
$ \Rightarrow \left( f.g \right)\left( x \right)=-36{{x}^{7}} $ ---(1).
Now, let us substitute 1 in place of x in equation (1) to find the value of $ \left( f.g \right)\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36{{\left( -1 \right)}^{7}} $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=-36\left( -1 \right) $ .
$ \Rightarrow \left( f.g \right)\left( -1 \right)=36 $ .
So, we have found the value of $ \left( f.g \right)\left( -1 \right) $ as 36.
$ \therefore $ The correct option for the given problem is (a).
Note:
Whenever we get this type of problems, we first check the domains of both the given functions as the values of the functions $ \dfrac{f}{g} $, $ fg $, $ \sqrt{f} $ etc can only be found in the common domain of both the given functions. We should not make calculation mistakes while solving this problem. Similarly, we can expect problems to find the value of $ \sqrt{fg}\left( -1 \right) $ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

