# If E and F are events such that $P(E) = \dfrac{1}{4},P(F) = \dfrac{1}{2}{\text{ and P(E}} \cap {\text{F) = }}\dfrac{1}{8}$find:

$(1){\text{ P(E }} \cup {\text{ F)}}$

$(2){\text{ P}}\left( {\overline E \cap \overline F } \right)$Or $P\left( {{E^1} \cap {F^1}} \right)$

Last updated date: 17th Mar 2023

•

Total views: 307.5k

•

Views today: 8.86k

Answer

Verified

307.5k+ views

Hint- Use the formulae for ${\text{P(E }} \cup {\text{ F)}}$ in the first part and use the concept of De Morgan’s law in the second part.

We have given, $P(E) = \dfrac{1}{4},P(F) = \dfrac{1}{2}{\text{ and P(E}} \cap {\text{F) = }}\dfrac{1}{8}$

$(1)$We know that${\text{P(E }} \cup {\text{ F)}} = P(E) + P(F) - P(E \cap F)$…………….. (1)

On substituting the values in equation (1) we get

${\text{P(E }} \cup {\text{ F)}} = \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{8} = \dfrac{{2 + 4 - 1}}{8} = \dfrac{5}{8}$

$(2)$Now from the solution of first part we know that

${\text{P(E }} \cup {\text{ F) = }}\dfrac{5}{8}$………………………………. (2)

Now using De Morgan’s law ${\left( {E \cup F} \right)^1} = \left( {{E^1} \cap {F^1}} \right)$

$ \Rightarrow P{\left( {E \cup F} \right)^1} = P\left( {{E^1} \cap {F^1}} \right)$……………………….. (3)

Now $P{\left( {E \cup F} \right)^1} = 1 - P\left( {E \cup F} \right)$ (As $P(\overline {E)} = 1 - P(E)$

So using equation (2)

$P{\left( {E \cup F} \right)^1} = 1 - \dfrac{5}{8} = \dfrac{3}{8}$

Using equation (3) we can say that

$ \Rightarrow $ $P\left( {{E^1} \cap {F^1}} \right) = \dfrac{3}{8}$

Note- Whenever we face such types of problems we need to have a good grasp of formula as these are mostly formula based only. Some of the important formulas and theorems are being stated above. The physical interpretation of ${\text{P(E }} \cup {\text{ F)}}$is that we need to find the probability of occurring of event E or F. The physical interpretation of ${\text{P}}\left( {\overline E \cap \overline F } \right)$is probability of neither event E occurring and nor event F occurring.

We have given, $P(E) = \dfrac{1}{4},P(F) = \dfrac{1}{2}{\text{ and P(E}} \cap {\text{F) = }}\dfrac{1}{8}$

$(1)$We know that${\text{P(E }} \cup {\text{ F)}} = P(E) + P(F) - P(E \cap F)$…………….. (1)

On substituting the values in equation (1) we get

${\text{P(E }} \cup {\text{ F)}} = \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{8} = \dfrac{{2 + 4 - 1}}{8} = \dfrac{5}{8}$

$(2)$Now from the solution of first part we know that

${\text{P(E }} \cup {\text{ F) = }}\dfrac{5}{8}$………………………………. (2)

Now using De Morgan’s law ${\left( {E \cup F} \right)^1} = \left( {{E^1} \cap {F^1}} \right)$

$ \Rightarrow P{\left( {E \cup F} \right)^1} = P\left( {{E^1} \cap {F^1}} \right)$……………………….. (3)

Now $P{\left( {E \cup F} \right)^1} = 1 - P\left( {E \cup F} \right)$ (As $P(\overline {E)} = 1 - P(E)$

So using equation (2)

$P{\left( {E \cup F} \right)^1} = 1 - \dfrac{5}{8} = \dfrac{3}{8}$

Using equation (3) we can say that

$ \Rightarrow $ $P\left( {{E^1} \cap {F^1}} \right) = \dfrac{3}{8}$

Note- Whenever we face such types of problems we need to have a good grasp of formula as these are mostly formula based only. Some of the important formulas and theorems are being stated above. The physical interpretation of ${\text{P(E }} \cup {\text{ F)}}$is that we need to find the probability of occurring of event E or F. The physical interpretation of ${\text{P}}\left( {\overline E \cap \overline F } \right)$is probability of neither event E occurring and nor event F occurring.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE