
If E and F are events such that $P(E) = \dfrac{1}{4},P(F) = \dfrac{1}{2}{\text{ and P(E}} \cap {\text{F) = }}\dfrac{1}{8}$find:
$(1){\text{ P(E }} \cup {\text{ F)}}$
$(2){\text{ P}}\left( {\overline E \cap \overline F } \right)$Or $P\left( {{E^1} \cap {F^1}} \right)$
Answer
623.1k+ views
Hint- Use the formulae for ${\text{P(E }} \cup {\text{ F)}}$ in the first part and use the concept of De Morgan’s law in the second part.
We have given, $P(E) = \dfrac{1}{4},P(F) = \dfrac{1}{2}{\text{ and P(E}} \cap {\text{F) = }}\dfrac{1}{8}$
$(1)$We know that${\text{P(E }} \cup {\text{ F)}} = P(E) + P(F) - P(E \cap F)$…………….. (1)
On substituting the values in equation (1) we get
${\text{P(E }} \cup {\text{ F)}} = \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{8} = \dfrac{{2 + 4 - 1}}{8} = \dfrac{5}{8}$
$(2)$Now from the solution of first part we know that
${\text{P(E }} \cup {\text{ F) = }}\dfrac{5}{8}$………………………………. (2)
Now using De Morgan’s law ${\left( {E \cup F} \right)^1} = \left( {{E^1} \cap {F^1}} \right)$
$ \Rightarrow P{\left( {E \cup F} \right)^1} = P\left( {{E^1} \cap {F^1}} \right)$……………………….. (3)
Now $P{\left( {E \cup F} \right)^1} = 1 - P\left( {E \cup F} \right)$ (As $P(\overline {E)} = 1 - P(E)$
So using equation (2)
$P{\left( {E \cup F} \right)^1} = 1 - \dfrac{5}{8} = \dfrac{3}{8}$
Using equation (3) we can say that
$ \Rightarrow $ $P\left( {{E^1} \cap {F^1}} \right) = \dfrac{3}{8}$
Note- Whenever we face such types of problems we need to have a good grasp of formula as these are mostly formula based only. Some of the important formulas and theorems are being stated above. The physical interpretation of ${\text{P(E }} \cup {\text{ F)}}$is that we need to find the probability of occurring of event E or F. The physical interpretation of ${\text{P}}\left( {\overline E \cap \overline F } \right)$is probability of neither event E occurring and nor event F occurring.
We have given, $P(E) = \dfrac{1}{4},P(F) = \dfrac{1}{2}{\text{ and P(E}} \cap {\text{F) = }}\dfrac{1}{8}$
$(1)$We know that${\text{P(E }} \cup {\text{ F)}} = P(E) + P(F) - P(E \cap F)$…………….. (1)
On substituting the values in equation (1) we get
${\text{P(E }} \cup {\text{ F)}} = \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{8} = \dfrac{{2 + 4 - 1}}{8} = \dfrac{5}{8}$
$(2)$Now from the solution of first part we know that
${\text{P(E }} \cup {\text{ F) = }}\dfrac{5}{8}$………………………………. (2)
Now using De Morgan’s law ${\left( {E \cup F} \right)^1} = \left( {{E^1} \cap {F^1}} \right)$
$ \Rightarrow P{\left( {E \cup F} \right)^1} = P\left( {{E^1} \cap {F^1}} \right)$……………………….. (3)
Now $P{\left( {E \cup F} \right)^1} = 1 - P\left( {E \cup F} \right)$ (As $P(\overline {E)} = 1 - P(E)$
So using equation (2)
$P{\left( {E \cup F} \right)^1} = 1 - \dfrac{5}{8} = \dfrac{3}{8}$
Using equation (3) we can say that
$ \Rightarrow $ $P\left( {{E^1} \cap {F^1}} \right) = \dfrac{3}{8}$
Note- Whenever we face such types of problems we need to have a good grasp of formula as these are mostly formula based only. Some of the important formulas and theorems are being stated above. The physical interpretation of ${\text{P(E }} \cup {\text{ F)}}$is that we need to find the probability of occurring of event E or F. The physical interpretation of ${\text{P}}\left( {\overline E \cap \overline F } \right)$is probability of neither event E occurring and nor event F occurring.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

