Answer

Verified

359.7k+ views

**Hint:**Here, we need to find the value of \[f\left( x \right)\]. We will simplify the left hand side using a long division method. Then, we will use the division algorithm and rewrite the expression. Finally, we will compare the equation obtained with the given equation to find the value of \[f\left( x \right)\].

**Formula Used:**

The division algorithm states that if \[p\left( x \right)\] and \[g\left( x \right)\] are two polynomials where \[g\left( x \right) \ne 0\], then there are two polynomials \[q\left( x \right)\] and \[r\left( x \right)\] such that \[p\left( x \right) = q\left( x \right) \times g\left( x \right) + r\left( x \right)\]. Here, \[p\left( x \right)\] is the dividend, \[g\left( x \right)\] is the divisor, \[q\left( x \right)\] is the quotient, and \[r\left( x \right)\] is the remainder.

**Complete step-by-step answer:**First, we will use a long division method to divide \[{x^3} - 6{x^2} + 10x - 2\] by \[{x^2} - 5x + 6\].

Therefore, we get

_{}

We can observe that when \[{x^3} - 6{x^2} + 10x - 2\] is divided by \[{x^2} - 5x + 6\] using long division method, the quotient is \[x - 1\], and the remainder is \[ - x + 4\].

Now, we will use the division algorithm.

The division algorithm states that if \[p\left( x \right)\] and \[g\left( x \right)\] are two polynomials where \[g\left( x \right) \ne 0\], then there are two polynomials \[q\left( x \right)\] and \[r\left( x \right)\] such that \[p\left( x \right) = q\left( x \right) \times g\left( x \right) + r\left( x \right)\]. Here, \[p\left( x \right)\] is the dividend, \[g\left( x \right)\] is the divisor, \[q\left( x \right)\] is the quotient, and \[r\left( x \right)\] is the remainder.

Thus, we get

\[p\left( x \right) = {x^3} - 6{x^2} + 10x - 2\]

\[q\left( x \right) = x - 1\]

\[r\left( x \right) = - x + 4\]

\[g\left( x \right) = {x^2} - 5x + 6\]

Substituting \[p\left( x \right) = {x^3} - 6{x^2} + 10x - 2\], \[q\left( x \right) = x - 1\], \[r\left( x \right) = - x + 4\], and \[g\left( x \right) = {x^2} - 5x + 6\] in the division algorithm, we get

\[ \Rightarrow {x^3} - 6{x^2} + 10x - 2 = \left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right) + \left( { - x + 4} \right)\]

Dividing both sides by \[{x^2} - 5x + 6\], we get

\[ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 + \left( {\dfrac{{ - x + 4}}{{{x^2} - 5x + 6}}} \right)\]

Rewriting the expression, we get

\[ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \left( {\dfrac{{x - 4}}{{{x^2} - 5x + 6}}} \right)\]

Factoring the denominator, we get

\[\begin{array}{l} \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \left( {\dfrac{{x - 4}}{{{x^2} - 3x - 2x + 6}}} \right)\\ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \left[ {\dfrac{{x - 4}}{{x\left( {x - 3} \right) - 2\left( {x - 3} \right)}}} \right]\\ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \left[ {\dfrac{{x - 4}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}} \right]\end{array}\]

Multiplying and dividing the fraction by 2, we get

\[\begin{array}{l} \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \dfrac{2}{2}\left[ {\dfrac{{x - 4}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}} \right]\\ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 4} \right)}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}} \right]\end{array}\]

Multiplying the above terms using the distributive property, we get

\[ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \dfrac{1}{2}\left[ {\dfrac{{2x - 8}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}} \right]\]

Rewriting the numerator, we get

\[\begin{array}{l} \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \dfrac{1}{2}\left[ {\dfrac{{x + x - 3 - 3 - 2}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}} \right]\\ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \dfrac{1}{2}\left[ {\dfrac{{x - 3 + x - 2 - 3}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}} \right]\end{array}\]

Separating the fractions with the same denominator, we get

\[ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \dfrac{1}{2}\left[ {\dfrac{{x - 3}}{{\left( {x - 3} \right)\left( {x - 2} \right)}} + \dfrac{{x - 2}}{{\left( {x - 3} \right)\left( {x - 2} \right)}} - \dfrac{3}{{\left( {x - 3} \right)\left( {x - 2} \right)}}} \right]\]

Simplifying the expressions, we get

\[ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \dfrac{1}{2}\left[ {\dfrac{1}{{x - 2}} + \dfrac{1}{{x - 3}} - \dfrac{3}{{\left( {x - 3} \right)\left( {x - 2} \right)}}} \right]\]

Multiplying the above terms using the distributive property, we get\[ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 - \dfrac{1}{{2\left( {x - 2} \right)}} - \dfrac{1}{{2\left( {x - 3} \right)}} + \dfrac{3}{{2\left( {x - 3} \right)\left( {x - 2} \right)}}\]

Rearranging the terms of the expression, we get

\[ \Rightarrow \dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 + \dfrac{3}{{2\left( {x - 3} \right)\left( {x - 2} \right)}} + \dfrac{{ - \dfrac{1}{2}}}{{\left( {x - 2} \right)}} + \dfrac{{ - \dfrac{1}{2}}}{{\left( {x - 3} \right)}}\]

It is given that \[\dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = f\left( x \right) + \dfrac{A}{{x - 2}} + \dfrac{B}{{x - 3}}\].

Here, \[A\] and \[B\] are constants.

Therefore, from the equations \[\dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = x - 1 + \dfrac{3}{{2\left( {x - 3} \right)\left( {x - 2} \right)}} + \dfrac{{ - \dfrac{1}{2}}}{{\left( {x - 2} \right)}} + \dfrac{{ - \dfrac{1}{2}}}{{\left( {x - 3} \right)}}\] and \[\dfrac{{{x^3} - 6{x^2} + 10x - 2}}{{{x^2} - 5x + 6}} = f\left( x \right) + \dfrac{A}{{x - 2}} + \dfrac{B}{{x - 3}}\], we get

\[ \Rightarrow x - 1 + \dfrac{3}{{2\left( {x - 3} \right)\left( {x - 2} \right)}} + \dfrac{{ - \dfrac{1}{2}}}{{\left( {x - 2} \right)}} + \dfrac{{ - \dfrac{1}{2}}}{{\left( {x - 3} \right)}} = f\left( x \right) + \dfrac{A}{{x - 2}} + \dfrac{B}{{x - 3}}\]

Comparing the terms of the expressions, we get

\[x - 1 + \dfrac{3}{{2\left( {x - 3} \right)\left( {x - 2} \right)}} = f\left( x \right)\]

\[\Rightarrow - \dfrac{1}{2} = A\]

\[\Rightarrow - \dfrac{1}{2} = B\]

Therefore, we get the value of \[f\left( x \right)\] as \[x - 1 + \dfrac{3}{{2\left( {x - 3} \right)\left( {x - 2} \right)}}\].

**Thus, none of the given options are correct.**

**Note:**We have used the distributive law of multiplication to multiply some expressions in the solution. The distributive law of multiplication states that \[a\left( {b + c} \right) = a \cdot b + a \cdot c\]. Here for finding the value of \[f\left( x \right)\] it is important for us to find the value of A and B.

Recently Updated Pages

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Can anyone list 10 advantages and disadvantages of friction

State and prove Bernoullis theorem class 11 physics CBSE

The ice floats on water because A solid have lesser class 9 chemistry CBSE

State Newtons formula for the velocity of sound in class 11 physics CBSE