If $\Delta DEF \sim \Delta MNK. $ If$DE = 2,{\text{ }}MN = 5$, then find the value of$\dfrac{{A\left( {\Delta DEF} \right)}}{{A\left( {\Delta MNK} \right)}}$ by using the property of similar triangles.
Answer
384.3k+ views
Hint: If two triangles are similar then the ratio of their respective sides are same i.e. (SSS congruence).
$ \Rightarrow \dfrac{{DE}}{{MN}} = \dfrac{{EF}}{{NK}} = \dfrac{{FD}}{{KM}}$
Consider the similar triangles DEF and MNK as shown in figure.
By the property of similar triangles, if two triangles are similar then the ratio of their respective sides are same i.e. (SSS congruence).
$ \Rightarrow \dfrac{{DE}}{{MN}} = \dfrac{{EF}}{{NK}} = \dfrac{{FD}}{{KM}}$
Now it is given that $DE = 2,{\text{ }}MN = 5$
$ \Rightarrow \dfrac{{DE}}{{MN}} = \dfrac{{EF}}{{NK}} = \dfrac{{FD}}{{KM}} = \dfrac{2}{5}...............\left( a \right)$
Now, we consider both as right angle triangle
So, the area of the right angle triangle is half multiplied by base time’s perpendicular.
$
\Rightarrow A\left( {\Delta DEF} \right) = \dfrac{1}{2}\left( {EF} \right)\left( {DE} \right).............\left( 1 \right) \\
\Rightarrow A\left( {\Delta MNK} \right) = \dfrac{1}{2}\left( {NK} \right)\left( {MN} \right).............\left( 2 \right) \\
$
So, divide equation (1) from equation (2)
$ \Rightarrow \dfrac{{A\left( {\Delta DEF} \right)}}{{A\left( {\Delta MNK} \right)}} = \dfrac{{\dfrac{1}{2}\left( {EF} \right)\left( {DE} \right)}}{{\dfrac{1}{2}\left( {NK} \right)\left( {MN} \right)}} = \dfrac{{\left( {EF} \right)\left( {DE} \right)}}{{\left( {NK} \right)\left( {MN} \right)}}..........\left( 3 \right)$
Now from equation (a)
$\dfrac{{DE}}{{MN}} = \dfrac{{EF}}{{NK}} = \dfrac{2}{5}$
Therefore from equation (3)
$ \Rightarrow \dfrac{{A\left( {\Delta DEF} \right)}}{{A\left( {\Delta MNK} \right)}} = \dfrac{{\left( {EF} \right)\left( {DE} \right)}}{{\left( {NK} \right)\left( {MN} \right)}} = {\left( {\dfrac{{DE}}{{MN}}} \right)^2}$
$ \Rightarrow \dfrac{{A\left( {\Delta DEF} \right)}}{{A\left( {\Delta MNK} \right)}} = {\left( {\dfrac{{DE}}{{MN}}} \right)^2} = {\left( {\dfrac{2}{5}} \right)^2} = \dfrac{4}{{25}}$
So, this is the required ratio of the area of triangle DEF to triangle MNK.
Note: In such types of questions always remember the key concept which is if two triangles are similar then the ratio of their respective sides are same i.e. (SSS congruence), and always remember the area of the right angle triangle which is stated above then using these properties calculate the ratio of the area of triangle DEF to triangle MNK which is the required answer.
$ \Rightarrow \dfrac{{DE}}{{MN}} = \dfrac{{EF}}{{NK}} = \dfrac{{FD}}{{KM}}$

Consider the similar triangles DEF and MNK as shown in figure.
By the property of similar triangles, if two triangles are similar then the ratio of their respective sides are same i.e. (SSS congruence).
$ \Rightarrow \dfrac{{DE}}{{MN}} = \dfrac{{EF}}{{NK}} = \dfrac{{FD}}{{KM}}$
Now it is given that $DE = 2,{\text{ }}MN = 5$
$ \Rightarrow \dfrac{{DE}}{{MN}} = \dfrac{{EF}}{{NK}} = \dfrac{{FD}}{{KM}} = \dfrac{2}{5}...............\left( a \right)$
Now, we consider both as right angle triangle
So, the area of the right angle triangle is half multiplied by base time’s perpendicular.
$
\Rightarrow A\left( {\Delta DEF} \right) = \dfrac{1}{2}\left( {EF} \right)\left( {DE} \right).............\left( 1 \right) \\
\Rightarrow A\left( {\Delta MNK} \right) = \dfrac{1}{2}\left( {NK} \right)\left( {MN} \right).............\left( 2 \right) \\
$
So, divide equation (1) from equation (2)
$ \Rightarrow \dfrac{{A\left( {\Delta DEF} \right)}}{{A\left( {\Delta MNK} \right)}} = \dfrac{{\dfrac{1}{2}\left( {EF} \right)\left( {DE} \right)}}{{\dfrac{1}{2}\left( {NK} \right)\left( {MN} \right)}} = \dfrac{{\left( {EF} \right)\left( {DE} \right)}}{{\left( {NK} \right)\left( {MN} \right)}}..........\left( 3 \right)$
Now from equation (a)
$\dfrac{{DE}}{{MN}} = \dfrac{{EF}}{{NK}} = \dfrac{2}{5}$
Therefore from equation (3)
$ \Rightarrow \dfrac{{A\left( {\Delta DEF} \right)}}{{A\left( {\Delta MNK} \right)}} = \dfrac{{\left( {EF} \right)\left( {DE} \right)}}{{\left( {NK} \right)\left( {MN} \right)}} = {\left( {\dfrac{{DE}}{{MN}}} \right)^2}$
$ \Rightarrow \dfrac{{A\left( {\Delta DEF} \right)}}{{A\left( {\Delta MNK} \right)}} = {\left( {\dfrac{{DE}}{{MN}}} \right)^2} = {\left( {\dfrac{2}{5}} \right)^2} = \dfrac{4}{{25}}$
So, this is the required ratio of the area of triangle DEF to triangle MNK.
Note: In such types of questions always remember the key concept which is if two triangles are similar then the ratio of their respective sides are same i.e. (SSS congruence), and always remember the area of the right angle triangle which is stated above then using these properties calculate the ratio of the area of triangle DEF to triangle MNK which is the required answer.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
