Question
Answers

If ${\text{cosecA}} = 2$, find the value of $\dfrac{1}{{\tan {\text{A}}}} + \dfrac{{\sin {\text{A}}}}{{1 + \cos {\text{A}}}}$.

Answer Verified Verified
Hint- Here, we will be using the concept of trigonometric functions and standard values in trigonometric tables.

Given, ${\text{cosecA}} = 2$
As we know that the sine trigonometric function is the reciprocal of cosecant trigonometric function. $\sin {\text{A}} = \dfrac{1}{{{\text{cosecA}}}} = \dfrac{1}{2} \Rightarrow {\text{A}} = {30^ \circ }$
i.e., angle A has a measure of 30 degrees.
According to the trigonometric table, we have
$\therefore \tan {\text{A}} = \tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and $cos{\text{A}} = \cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Now substituting the values of trigonometric functions (sine, cosine and tangent) in the expression whose value is needed.
i.e., \[
  \dfrac{1}{{\tan {\text{A}}}} + \dfrac{{\sin {\text{A}}}}{{1 + \cos {\text{A}}}} = \dfrac{1}{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}} + \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{1 + \left( {\dfrac{{\sqrt 3 }}{2}} \right)}} = \sqrt 3 + \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}} = \sqrt 3 + \dfrac{1}{{2 + \sqrt 3 }} = \dfrac{{\left( {\sqrt 3 } \right)\left( {2 + \sqrt 3 } \right) + 1}}{{2 + \sqrt 3 }} = \dfrac{{2\sqrt 3 + 3 + 1}}{{2 + \sqrt 3 }} \\
   \Rightarrow \dfrac{1}{{\tan {\text{A}}}} + \dfrac{{\sin {\text{A}}}}{{1 + \cos {\text{A}}}} = \dfrac{{2\sqrt 3 + 4}}{{2 + \sqrt 3 }} \\
 \]

Note- In these types of problems, the given trigonometric function is converted into other trigonometric functions whose values are further needed to find the value of the unknown expression.

Bookmark added to your notes.
View Notes
×