
If \[\cos x = - \dfrac{4}{5}\] , where $x \in \left[ {0,\pi } \right]$ , then the value of $\cos \left( {\dfrac{x}{2}} \right)$ is equal to:
$
\left( a \right)\dfrac{1}{{10}} \\
\left( b \right)\dfrac{2}{5} \\
\left( c \right)\dfrac{1}{{\sqrt {10} }} \\
\left( d \right) - \dfrac{2}{5} \\
\left( e \right) - \dfrac{1}{{\sqrt {10} }} \\
$
Answer
606k+ views
Hint: Use double angle identities of trigonometry . We know this relation $\cos \left( {2x} \right) = 2{\cos ^2}\left( x \right) - 1$ and also we can write like $\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$.
Complete step-by-step answer:
Given, \[\cos x = - \dfrac{4}{5},x \in \left[ {0,\pi } \right]\]
Now, we use the double angle identity of trigonometry.
$\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$
Use the value of $\cos x$ in above identity.
$
\Rightarrow - \dfrac{4}{5} = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 - \dfrac{4}{5} \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{5} \\
\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{{10}} \\
$
Take square root
$ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \pm \dfrac{1}{{\sqrt {10} }}$
We can see two values of $\cos \left( {\dfrac{x}{2}} \right)$ but we have to choose only one value. So, we use $x \in \left[ {0,\pi } \right]$ .
Given, $x \in \left[ {0,\pi } \right]$
$
0 \leqslant x \leqslant \pi \\
\Rightarrow 0 \leqslant \dfrac{x}{2} \leqslant \dfrac{\pi }{2} \\
$
So, $\dfrac{x}{2} \in \left[ {0,\dfrac{\pi }{2}} \right]$
We know the graph of cosine is positive from 0 to $\dfrac{\pi }{2}$ .
Now, the value of $\cos \left( {\dfrac{x}{2}} \right) = \dfrac{1}{{\sqrt {10} }}$ .
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. First we use trigonometric identities and after solving we get two answers one is positive and other is negative. So, for the correct answer we use range of x and observe whether the graph of that function is positive or negative on range of x.
Complete step-by-step answer:
Given, \[\cos x = - \dfrac{4}{5},x \in \left[ {0,\pi } \right]\]
Now, we use the double angle identity of trigonometry.
$\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$
Use the value of $\cos x$ in above identity.
$
\Rightarrow - \dfrac{4}{5} = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 - \dfrac{4}{5} \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{5} \\
\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{{10}} \\
$
Take square root
$ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \pm \dfrac{1}{{\sqrt {10} }}$
We can see two values of $\cos \left( {\dfrac{x}{2}} \right)$ but we have to choose only one value. So, we use $x \in \left[ {0,\pi } \right]$ .
Given, $x \in \left[ {0,\pi } \right]$
$
0 \leqslant x \leqslant \pi \\
\Rightarrow 0 \leqslant \dfrac{x}{2} \leqslant \dfrac{\pi }{2} \\
$
So, $\dfrac{x}{2} \in \left[ {0,\dfrac{\pi }{2}} \right]$
We know the graph of cosine is positive from 0 to $\dfrac{\pi }{2}$ .
Now, the value of $\cos \left( {\dfrac{x}{2}} \right) = \dfrac{1}{{\sqrt {10} }}$ .
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. First we use trigonometric identities and after solving we get two answers one is positive and other is negative. So, for the correct answer we use range of x and observe whether the graph of that function is positive or negative on range of x.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

