# If \[\cos x = - \dfrac{4}{5}\] , where $x \in \left[ {0,\pi } \right]$ , then the value of $\cos \left( {\dfrac{x}{2}} \right)$ is equal to:

$

\left( a \right)\dfrac{1}{{10}} \\

\left( b \right)\dfrac{2}{5} \\

\left( c \right)\dfrac{1}{{\sqrt {10} }} \\

\left( d \right) - \dfrac{2}{5} \\

\left( e \right) - \dfrac{1}{{\sqrt {10} }} \\

$

Last updated date: 16th Mar 2023

•

Total views: 305.4k

•

Views today: 4.87k

Answer

Verified

305.4k+ views

Hint: Use double angle identities of trigonometry . We know this relation $\cos \left( {2x} \right) = 2{\cos ^2}\left( x \right) - 1$ and also we can write like $\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$.

Complete step-by-step answer:

Given, \[\cos x = - \dfrac{4}{5},x \in \left[ {0,\pi } \right]\]

Now, we use the double angle identity of trigonometry.

$\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$

Use the value of $\cos x$ in above identity.

$

\Rightarrow - \dfrac{4}{5} = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 \\

\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 - \dfrac{4}{5} \\

\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{5} \\

\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{{10}} \\

$

Take square root

$ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \pm \dfrac{1}{{\sqrt {10} }}$

We can see two values of $\cos \left( {\dfrac{x}{2}} \right)$ but we have to choose only one value. So, we use $x \in \left[ {0,\pi } \right]$ .

Given, $x \in \left[ {0,\pi } \right]$

$

0 \leqslant x \leqslant \pi \\

\Rightarrow 0 \leqslant \dfrac{x}{2} \leqslant \dfrac{\pi }{2} \\

$

So, $\dfrac{x}{2} \in \left[ {0,\dfrac{\pi }{2}} \right]$

We know the graph of cosine is positive from 0 to $\dfrac{\pi }{2}$ .

Now, the value of $\cos \left( {\dfrac{x}{2}} \right) = \dfrac{1}{{\sqrt {10} }}$ .

So, the correct option is (c).

Note: Whenever we face such types of problems we use some important points. First we use trigonometric identities and after solving we get two answers one is positive and other is negative. So, for the correct answer we use range of x and observe whether the graph of that function is positive or negative on range of x.

Complete step-by-step answer:

Given, \[\cos x = - \dfrac{4}{5},x \in \left[ {0,\pi } \right]\]

Now, we use the double angle identity of trigonometry.

$\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$

Use the value of $\cos x$ in above identity.

$

\Rightarrow - \dfrac{4}{5} = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 \\

\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 - \dfrac{4}{5} \\

\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{5} \\

\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{{10}} \\

$

Take square root

$ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \pm \dfrac{1}{{\sqrt {10} }}$

We can see two values of $\cos \left( {\dfrac{x}{2}} \right)$ but we have to choose only one value. So, we use $x \in \left[ {0,\pi } \right]$ .

Given, $x \in \left[ {0,\pi } \right]$

$

0 \leqslant x \leqslant \pi \\

\Rightarrow 0 \leqslant \dfrac{x}{2} \leqslant \dfrac{\pi }{2} \\

$

So, $\dfrac{x}{2} \in \left[ {0,\dfrac{\pi }{2}} \right]$

We know the graph of cosine is positive from 0 to $\dfrac{\pi }{2}$ .

Now, the value of $\cos \left( {\dfrac{x}{2}} \right) = \dfrac{1}{{\sqrt {10} }}$ .

So, the correct option is (c).

Note: Whenever we face such types of problems we use some important points. First we use trigonometric identities and after solving we get two answers one is positive and other is negative. So, for the correct answer we use range of x and observe whether the graph of that function is positive or negative on range of x.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE