
If \[\cos x = - \dfrac{4}{5}\] , where $x \in \left[ {0,\pi } \right]$ , then the value of $\cos \left( {\dfrac{x}{2}} \right)$ is equal to:
$
\left( a \right)\dfrac{1}{{10}} \\
\left( b \right)\dfrac{2}{5} \\
\left( c \right)\dfrac{1}{{\sqrt {10} }} \\
\left( d \right) - \dfrac{2}{5} \\
\left( e \right) - \dfrac{1}{{\sqrt {10} }} \\
$
Answer
533.1k+ views
Hint: Use double angle identities of trigonometry . We know this relation $\cos \left( {2x} \right) = 2{\cos ^2}\left( x \right) - 1$ and also we can write like $\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$.
Complete step-by-step answer:
Given, \[\cos x = - \dfrac{4}{5},x \in \left[ {0,\pi } \right]\]
Now, we use the double angle identity of trigonometry.
$\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$
Use the value of $\cos x$ in above identity.
$
\Rightarrow - \dfrac{4}{5} = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 - \dfrac{4}{5} \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{5} \\
\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{{10}} \\
$
Take square root
$ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \pm \dfrac{1}{{\sqrt {10} }}$
We can see two values of $\cos \left( {\dfrac{x}{2}} \right)$ but we have to choose only one value. So, we use $x \in \left[ {0,\pi } \right]$ .
Given, $x \in \left[ {0,\pi } \right]$
$
0 \leqslant x \leqslant \pi \\
\Rightarrow 0 \leqslant \dfrac{x}{2} \leqslant \dfrac{\pi }{2} \\
$
So, $\dfrac{x}{2} \in \left[ {0,\dfrac{\pi }{2}} \right]$
We know the graph of cosine is positive from 0 to $\dfrac{\pi }{2}$ .
Now, the value of $\cos \left( {\dfrac{x}{2}} \right) = \dfrac{1}{{\sqrt {10} }}$ .
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. First we use trigonometric identities and after solving we get two answers one is positive and other is negative. So, for the correct answer we use range of x and observe whether the graph of that function is positive or negative on range of x.
Complete step-by-step answer:
Given, \[\cos x = - \dfrac{4}{5},x \in \left[ {0,\pi } \right]\]
Now, we use the double angle identity of trigonometry.
$\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$
Use the value of $\cos x$ in above identity.
$
\Rightarrow - \dfrac{4}{5} = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 - \dfrac{4}{5} \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{5} \\
\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{{10}} \\
$
Take square root
$ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \pm \dfrac{1}{{\sqrt {10} }}$
We can see two values of $\cos \left( {\dfrac{x}{2}} \right)$ but we have to choose only one value. So, we use $x \in \left[ {0,\pi } \right]$ .
Given, $x \in \left[ {0,\pi } \right]$
$
0 \leqslant x \leqslant \pi \\
\Rightarrow 0 \leqslant \dfrac{x}{2} \leqslant \dfrac{\pi }{2} \\
$
So, $\dfrac{x}{2} \in \left[ {0,\dfrac{\pi }{2}} \right]$
We know the graph of cosine is positive from 0 to $\dfrac{\pi }{2}$ .
Now, the value of $\cos \left( {\dfrac{x}{2}} \right) = \dfrac{1}{{\sqrt {10} }}$ .
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. First we use trigonometric identities and after solving we get two answers one is positive and other is negative. So, for the correct answer we use range of x and observe whether the graph of that function is positive or negative on range of x.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
