
If $ \cos \theta =\dfrac{5}{13} $ , find the value of $ \dfrac{2\sin \theta -{{\cos }^{2}}\theta }{2\sin \theta \cos \theta }\times \dfrac{1}{{{\tan }^{2}}\theta } $ . \[\]
Answer
538.8k+ views
Hint:
We recall the definitions of sine, cosine and tangent trigonometric ratios from the right angled triangle. We take the length of the adjacent side as $ b=5 $ and hypotenuse as $ h=13 $ . We find the side $ b $ using Pythagoras theorem. We find $ \sin \theta =\dfrac{p}{h},\tan \theta =\dfrac{p}{b} $ and put the values in given trigonometric expression.\[\]
Complete step by step answer:
We know that in right angled triangle (here $ \Delta ABC $ ) the side opposite to right angled triangle is called hypotenuse denoted as $ h=AC $ , the vertical side is called perpendicular denoted as $ p=AB $ and the horizontal side is called the base denoted as $ b=BC $ .\[\]
We know from the trigonometric ratios in a right angled triangle the sine of any angle is given by the ratio of side opposite to the angle to the hypotenuse. In the figure the sine of the angle $ \theta $ is given by
\[\sin \theta =\dfrac{p}{h}\]
Similarly the cosine of an angle is the ratio of side adjacent to the angle (excluding hypotenuse) to the hypotenuse. So we have cosine of angle $ \theta $
\[\cos \theta =\dfrac{b}{h}.\]
The tangent of the angle is the ratio of opposite side to the adjacent side (excluding hypotenuse) . So we have tangent of the angle of angle $ \theta $
\[\tan \theta =\dfrac{p}{b}\]
We know from Pythagoras theorem that “in a right-angled triangle the square of the hypotenuse is the sum of squares of the other two sides”. So in triangle we have
\[\begin{align}
& {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow {{p}^{2}}={{h}^{2}}-{{b}^{2}} \\
& \Rightarrow p=\sqrt{{{h}^{2}}-{{b}^{2}}} \\
\end{align}\]
We are give in the question that $ \cos \theta =\dfrac{5}{13} $ . So we have;
\[\cos \theta =\dfrac{5}{13}=\dfrac{b}{h}\]
So let us take $ b=5,h=13 $ . So we have
\[p=\sqrt{{{13}^{2}}-{{5}^{2}}}=\sqrt{169-25}=\sqrt{144}=12\]
So we have sine and tangent of the angle as;
$ \begin{align}
& \sin \theta =\dfrac{p}{h}=\dfrac{12}{13} \\
& \tan \theta =\dfrac{p}{b}=\dfrac{12}{5} \\
\end{align} $
We pout the obtained values of \[\sin \theta =\dfrac{12}{13},\tan \theta =\dfrac{12}{5}\] and give value of $ \cos \theta =\dfrac{5}{13} $ in the given expression to have;
\[\begin{align}
& \dfrac{2\sin \theta -{{\cos }^{2}}\theta }{2\sin \theta \cos \theta }\times \dfrac{1}{{{\tan }^{2}}\theta } \\
& \Rightarrow \dfrac{2\times \dfrac{12}{13}-\dfrac{{{5}^{2}}}{{{13}^{2}}}}{2\times \dfrac{12}{13}\times \dfrac{5}{13}}\times \dfrac{1}{{{\left( \dfrac{12}{5} \right)}^{2}}} \\
& \Rightarrow \dfrac{\dfrac{2\times 12\times 13-{{5}^{2}}}{{{13}^{2}}}}{\dfrac{2\times 12\times 5}{{{13}^{2}}}}\times \dfrac{{{5}^{2}}}{{{12}^{2}}} \\
\end{align}\]
We cancel out $ {{13}^{2}} $ from the numerator and denominator to have;
\[\begin{align}
& \Rightarrow \dfrac{312-25}{120}\times \dfrac{25}{144} \\
& \Rightarrow \dfrac{287}{24}\times \dfrac{5}{144}=\dfrac{1435}{3456} \\
\end{align}\]
So the evaluated value is $ \dfrac{1435}{3456} $ .\[\]
Note:
We can alternatively solve by using Pythagorean trigonometric identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ to find $ \sin \theta $ and the $ \tan \theta $ from $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ . We note that lengths are always positive and that we have taken positive square roots only. The reciprocal ratios of sine, cosine and tangent are given as $ \operatorname{cosec}\theta =\dfrac{h}{p},\sec \theta =\dfrac{h}{b},\cot \theta =\dfrac{b}{p} $ .
We recall the definitions of sine, cosine and tangent trigonometric ratios from the right angled triangle. We take the length of the adjacent side as $ b=5 $ and hypotenuse as $ h=13 $ . We find the side $ b $ using Pythagoras theorem. We find $ \sin \theta =\dfrac{p}{h},\tan \theta =\dfrac{p}{b} $ and put the values in given trigonometric expression.\[\]
Complete step by step answer:
We know that in right angled triangle (here $ \Delta ABC $ ) the side opposite to right angled triangle is called hypotenuse denoted as $ h=AC $ , the vertical side is called perpendicular denoted as $ p=AB $ and the horizontal side is called the base denoted as $ b=BC $ .\[\]
We know from the trigonometric ratios in a right angled triangle the sine of any angle is given by the ratio of side opposite to the angle to the hypotenuse. In the figure the sine of the angle $ \theta $ is given by
\[\sin \theta =\dfrac{p}{h}\]
Similarly the cosine of an angle is the ratio of side adjacent to the angle (excluding hypotenuse) to the hypotenuse. So we have cosine of angle $ \theta $
\[\cos \theta =\dfrac{b}{h}.\]
The tangent of the angle is the ratio of opposite side to the adjacent side (excluding hypotenuse) . So we have tangent of the angle of angle $ \theta $
\[\tan \theta =\dfrac{p}{b}\]
We know from Pythagoras theorem that “in a right-angled triangle the square of the hypotenuse is the sum of squares of the other two sides”. So in triangle we have
\[\begin{align}
& {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow {{p}^{2}}={{h}^{2}}-{{b}^{2}} \\
& \Rightarrow p=\sqrt{{{h}^{2}}-{{b}^{2}}} \\
\end{align}\]
We are give in the question that $ \cos \theta =\dfrac{5}{13} $ . So we have;
\[\cos \theta =\dfrac{5}{13}=\dfrac{b}{h}\]
So let us take $ b=5,h=13 $ . So we have
\[p=\sqrt{{{13}^{2}}-{{5}^{2}}}=\sqrt{169-25}=\sqrt{144}=12\]
So we have sine and tangent of the angle as;
$ \begin{align}
& \sin \theta =\dfrac{p}{h}=\dfrac{12}{13} \\
& \tan \theta =\dfrac{p}{b}=\dfrac{12}{5} \\
\end{align} $
We pout the obtained values of \[\sin \theta =\dfrac{12}{13},\tan \theta =\dfrac{12}{5}\] and give value of $ \cos \theta =\dfrac{5}{13} $ in the given expression to have;
\[\begin{align}
& \dfrac{2\sin \theta -{{\cos }^{2}}\theta }{2\sin \theta \cos \theta }\times \dfrac{1}{{{\tan }^{2}}\theta } \\
& \Rightarrow \dfrac{2\times \dfrac{12}{13}-\dfrac{{{5}^{2}}}{{{13}^{2}}}}{2\times \dfrac{12}{13}\times \dfrac{5}{13}}\times \dfrac{1}{{{\left( \dfrac{12}{5} \right)}^{2}}} \\
& \Rightarrow \dfrac{\dfrac{2\times 12\times 13-{{5}^{2}}}{{{13}^{2}}}}{\dfrac{2\times 12\times 5}{{{13}^{2}}}}\times \dfrac{{{5}^{2}}}{{{12}^{2}}} \\
\end{align}\]
We cancel out $ {{13}^{2}} $ from the numerator and denominator to have;
\[\begin{align}
& \Rightarrow \dfrac{312-25}{120}\times \dfrac{25}{144} \\
& \Rightarrow \dfrac{287}{24}\times \dfrac{5}{144}=\dfrac{1435}{3456} \\
\end{align}\]
So the evaluated value is $ \dfrac{1435}{3456} $ .\[\]
Note:
We can alternatively solve by using Pythagorean trigonometric identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ to find $ \sin \theta $ and the $ \tan \theta $ from $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ . We note that lengths are always positive and that we have taken positive square roots only. The reciprocal ratios of sine, cosine and tangent are given as $ \operatorname{cosec}\theta =\dfrac{h}{p},\sec \theta =\dfrac{h}{b},\cot \theta =\dfrac{b}{p} $ .
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

