Answer
Verified
493.2k+ views
Hint: Square the equation from both the sides and use the formulae \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], \[{{\cos }^{2}}\theta {}^\circ +{{\sin }^{2}}\theta {}^\circ =1\], and \[2\times \sin \theta {}^\circ \times \cos \theta {}^\circ =\sin \left( 2\times \theta \right){}^\circ \]; you will get the equation for \[\sin 50{}^\circ \] then again square the equation and use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] and simplify it to get the final answer.
Complete step-by-step answer:
To solve the above equation we will write it down first, Therefore,
\[\cos 25{}^\circ +\sin 25{}^\circ =p\]
If we square the above equation on both sides we will get,
\[\therefore {{\left( \cos 25{}^\circ +\sin 25{}^\circ \right)}^{2}}={{p}^{2}}\] …………………………………………… (1)
To proceed further in the solution we should know the formula given below,
Formula:
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
If we use the above formula in equation (1) we will get,
\[\therefore {{\left( \cos 25{}^\circ \right)}^{2}}+2\times \left( \cos 25{}^\circ \right)\times \left( \sin 25{}^\circ \right)+{{\left( \sin 25{}^\circ \right)}^{2}}={{p}^{2}}\]
By rearranging the above equation we will get,
\[\therefore {{\left( \cos 25{}^\circ \right)}^{2}}+{{\left( \sin 25{}^\circ \right)}^{2}}+2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\]
\[\therefore {{\cos }^{2}}25{}^\circ +{{\sin }^{2}}25{}^\circ +2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\] …………………………………….. (2)
To proceed further in the solution in the solution we should know the formula given below,
Formula:
\[{{\cos }^{2}}\theta {}^\circ +{{\sin }^{2}}\theta {}^\circ =1\]
If we use the above formula in equation (2) we will get,
\[\therefore 1+2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\]
To proceed further in the solution in the solution we should know the formula given below,
Formula:
\[2\times \sin \theta {}^\circ \times \cos \theta {}^\circ =\sin \left( 2\times \theta \right){}^\circ \]
By using above formula we will get,
\[\therefore 1+\sin \left( 2\times 25 \right){}^\circ ={{p}^{2}}\]
After multiplication we will get,
\[\therefore 1+\sin 50{}^\circ ={{p}^{2}}\]
If we shift ‘1’ on the right hand side of the equation we will get,
\[\therefore \sin 50{}^\circ ={{p}^{2}}-1\]
Now, to find the value of \[\cos 50{}^\circ \] we will square the above equation on the both sides so that we can use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] and simplify it.
\[\therefore {{\left( \sin 50{}^\circ \right)}^{2}}={{\left( {{p}^{2}}-1 \right)}^{2}}\]
By using the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] in the above equation we will get,
\[\therefore {{\sin }^{2}}50{}^\circ ={{\left( {{p}^{2}} \right)}^{2}}-2\times {{p}^{2}}\times 1+{{1}^{2}}\]
If we do further simplification in the solution we will get,
\[\therefore {{\sin }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\]
If we use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] in the above equation we will get,
\[\therefore 1-{{\cos }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\]
If we multiply the above equation by ‘-1’ we will get,
\[\therefore -1\times \left( 1-{{\cos }^{2}}50{}^\circ \right)=-1\times \left( {{p}^{4}}-2{{p}^{2}}+1 \right)\]
\[\therefore -1+{{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}-1\]
If we shift ‘-1’ on the right hand side of the equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}-1+1\]
\[\therefore {{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}\]
If we take \[{{p}^{2}}\] common from the above equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ ={{p}^{2}}\left( -{{p}^{2}}+2 \right)\]
By rearranging the above equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ ={{p}^{2}}\left( 2-{{p}^{2}} \right)\]
As we have to find the value of \[\cos 50{}^\circ \] therefore we will simply take the square roots on both sides of the equation, therefore we will get,
\[\therefore \sqrt{{{\cos }^{2}}50{}^\circ }=\sqrt{{{p}^{2}}\left( 2-{{p}^{2}} \right)}\]
As the square root of \[{{\cos }^{2}}50{}^\circ \] is \[\cos 50{}^\circ \] and he square root of \[{{p}^{2}}\]is p therefore the above equation will become,
\[\therefore \cos 50{}^\circ =p\sqrt{\left( 2-{{p}^{2}} \right)}\]
Therefore, if \[\cos 25{}^\circ +\sin 25{}^\circ =p\] the value of \[\cos 50{}^\circ \] is \[p\sqrt{\left( 2-{{p}^{2}} \right)}\].
Therefore the correct answer is option (c).
Note: You can solve the step \[1-{{\cos }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\] without multiplying it by ‘-1’ but then you have to be very careful about the signs.
Complete step-by-step answer:
To solve the above equation we will write it down first, Therefore,
\[\cos 25{}^\circ +\sin 25{}^\circ =p\]
If we square the above equation on both sides we will get,
\[\therefore {{\left( \cos 25{}^\circ +\sin 25{}^\circ \right)}^{2}}={{p}^{2}}\] …………………………………………… (1)
To proceed further in the solution we should know the formula given below,
Formula:
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
If we use the above formula in equation (1) we will get,
\[\therefore {{\left( \cos 25{}^\circ \right)}^{2}}+2\times \left( \cos 25{}^\circ \right)\times \left( \sin 25{}^\circ \right)+{{\left( \sin 25{}^\circ \right)}^{2}}={{p}^{2}}\]
By rearranging the above equation we will get,
\[\therefore {{\left( \cos 25{}^\circ \right)}^{2}}+{{\left( \sin 25{}^\circ \right)}^{2}}+2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\]
\[\therefore {{\cos }^{2}}25{}^\circ +{{\sin }^{2}}25{}^\circ +2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\] …………………………………….. (2)
To proceed further in the solution in the solution we should know the formula given below,
Formula:
\[{{\cos }^{2}}\theta {}^\circ +{{\sin }^{2}}\theta {}^\circ =1\]
If we use the above formula in equation (2) we will get,
\[\therefore 1+2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\]
To proceed further in the solution in the solution we should know the formula given below,
Formula:
\[2\times \sin \theta {}^\circ \times \cos \theta {}^\circ =\sin \left( 2\times \theta \right){}^\circ \]
By using above formula we will get,
\[\therefore 1+\sin \left( 2\times 25 \right){}^\circ ={{p}^{2}}\]
After multiplication we will get,
\[\therefore 1+\sin 50{}^\circ ={{p}^{2}}\]
If we shift ‘1’ on the right hand side of the equation we will get,
\[\therefore \sin 50{}^\circ ={{p}^{2}}-1\]
Now, to find the value of \[\cos 50{}^\circ \] we will square the above equation on the both sides so that we can use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] and simplify it.
\[\therefore {{\left( \sin 50{}^\circ \right)}^{2}}={{\left( {{p}^{2}}-1 \right)}^{2}}\]
By using the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] in the above equation we will get,
\[\therefore {{\sin }^{2}}50{}^\circ ={{\left( {{p}^{2}} \right)}^{2}}-2\times {{p}^{2}}\times 1+{{1}^{2}}\]
If we do further simplification in the solution we will get,
\[\therefore {{\sin }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\]
If we use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] in the above equation we will get,
\[\therefore 1-{{\cos }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\]
If we multiply the above equation by ‘-1’ we will get,
\[\therefore -1\times \left( 1-{{\cos }^{2}}50{}^\circ \right)=-1\times \left( {{p}^{4}}-2{{p}^{2}}+1 \right)\]
\[\therefore -1+{{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}-1\]
If we shift ‘-1’ on the right hand side of the equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}-1+1\]
\[\therefore {{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}\]
If we take \[{{p}^{2}}\] common from the above equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ ={{p}^{2}}\left( -{{p}^{2}}+2 \right)\]
By rearranging the above equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ ={{p}^{2}}\left( 2-{{p}^{2}} \right)\]
As we have to find the value of \[\cos 50{}^\circ \] therefore we will simply take the square roots on both sides of the equation, therefore we will get,
\[\therefore \sqrt{{{\cos }^{2}}50{}^\circ }=\sqrt{{{p}^{2}}\left( 2-{{p}^{2}} \right)}\]
As the square root of \[{{\cos }^{2}}50{}^\circ \] is \[\cos 50{}^\circ \] and he square root of \[{{p}^{2}}\]is p therefore the above equation will become,
\[\therefore \cos 50{}^\circ =p\sqrt{\left( 2-{{p}^{2}} \right)}\]
Therefore, if \[\cos 25{}^\circ +\sin 25{}^\circ =p\] the value of \[\cos 50{}^\circ \] is \[p\sqrt{\left( 2-{{p}^{2}} \right)}\].
Therefore the correct answer is option (c).
Note: You can solve the step \[1-{{\cos }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\] without multiplying it by ‘-1’ but then you have to be very careful about the signs.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it