
If \[\cos 25{}^\circ +\sin 25{}^\circ =p\], then \[\cos 50{}^\circ \] is?
(a).\[\sqrt{2-{{p}^{2}}}\]
(b).\[-\sqrt{2-{{p}^{2}}}\]
(c).\[p\sqrt{2-{{p}^{2}}}\]
(d).\[-p\sqrt{2-{{p}^{2}}}\]
Answer
607.2k+ views
Hint: Square the equation from both the sides and use the formulae \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], \[{{\cos }^{2}}\theta {}^\circ +{{\sin }^{2}}\theta {}^\circ =1\], and \[2\times \sin \theta {}^\circ \times \cos \theta {}^\circ =\sin \left( 2\times \theta \right){}^\circ \]; you will get the equation for \[\sin 50{}^\circ \] then again square the equation and use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] and simplify it to get the final answer.
Complete step-by-step answer:
To solve the above equation we will write it down first, Therefore,
\[\cos 25{}^\circ +\sin 25{}^\circ =p\]
If we square the above equation on both sides we will get,
\[\therefore {{\left( \cos 25{}^\circ +\sin 25{}^\circ \right)}^{2}}={{p}^{2}}\] …………………………………………… (1)
To proceed further in the solution we should know the formula given below,
Formula:
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
If we use the above formula in equation (1) we will get,
\[\therefore {{\left( \cos 25{}^\circ \right)}^{2}}+2\times \left( \cos 25{}^\circ \right)\times \left( \sin 25{}^\circ \right)+{{\left( \sin 25{}^\circ \right)}^{2}}={{p}^{2}}\]
By rearranging the above equation we will get,
\[\therefore {{\left( \cos 25{}^\circ \right)}^{2}}+{{\left( \sin 25{}^\circ \right)}^{2}}+2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\]
\[\therefore {{\cos }^{2}}25{}^\circ +{{\sin }^{2}}25{}^\circ +2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\] …………………………………….. (2)
To proceed further in the solution in the solution we should know the formula given below,
Formula:
\[{{\cos }^{2}}\theta {}^\circ +{{\sin }^{2}}\theta {}^\circ =1\]
If we use the above formula in equation (2) we will get,
\[\therefore 1+2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\]
To proceed further in the solution in the solution we should know the formula given below,
Formula:
\[2\times \sin \theta {}^\circ \times \cos \theta {}^\circ =\sin \left( 2\times \theta \right){}^\circ \]
By using above formula we will get,
\[\therefore 1+\sin \left( 2\times 25 \right){}^\circ ={{p}^{2}}\]
After multiplication we will get,
\[\therefore 1+\sin 50{}^\circ ={{p}^{2}}\]
If we shift ‘1’ on the right hand side of the equation we will get,
\[\therefore \sin 50{}^\circ ={{p}^{2}}-1\]
Now, to find the value of \[\cos 50{}^\circ \] we will square the above equation on the both sides so that we can use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] and simplify it.
\[\therefore {{\left( \sin 50{}^\circ \right)}^{2}}={{\left( {{p}^{2}}-1 \right)}^{2}}\]
By using the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] in the above equation we will get,
\[\therefore {{\sin }^{2}}50{}^\circ ={{\left( {{p}^{2}} \right)}^{2}}-2\times {{p}^{2}}\times 1+{{1}^{2}}\]
If we do further simplification in the solution we will get,
\[\therefore {{\sin }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\]
If we use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] in the above equation we will get,
\[\therefore 1-{{\cos }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\]
If we multiply the above equation by ‘-1’ we will get,
\[\therefore -1\times \left( 1-{{\cos }^{2}}50{}^\circ \right)=-1\times \left( {{p}^{4}}-2{{p}^{2}}+1 \right)\]
\[\therefore -1+{{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}-1\]
If we shift ‘-1’ on the right hand side of the equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}-1+1\]
\[\therefore {{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}\]
If we take \[{{p}^{2}}\] common from the above equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ ={{p}^{2}}\left( -{{p}^{2}}+2 \right)\]
By rearranging the above equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ ={{p}^{2}}\left( 2-{{p}^{2}} \right)\]
As we have to find the value of \[\cos 50{}^\circ \] therefore we will simply take the square roots on both sides of the equation, therefore we will get,
\[\therefore \sqrt{{{\cos }^{2}}50{}^\circ }=\sqrt{{{p}^{2}}\left( 2-{{p}^{2}} \right)}\]
As the square root of \[{{\cos }^{2}}50{}^\circ \] is \[\cos 50{}^\circ \] and he square root of \[{{p}^{2}}\]is p therefore the above equation will become,
\[\therefore \cos 50{}^\circ =p\sqrt{\left( 2-{{p}^{2}} \right)}\]
Therefore, if \[\cos 25{}^\circ +\sin 25{}^\circ =p\] the value of \[\cos 50{}^\circ \] is \[p\sqrt{\left( 2-{{p}^{2}} \right)}\].
Therefore the correct answer is option (c).
Note: You can solve the step \[1-{{\cos }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\] without multiplying it by ‘-1’ but then you have to be very careful about the signs.
Complete step-by-step answer:
To solve the above equation we will write it down first, Therefore,
\[\cos 25{}^\circ +\sin 25{}^\circ =p\]
If we square the above equation on both sides we will get,
\[\therefore {{\left( \cos 25{}^\circ +\sin 25{}^\circ \right)}^{2}}={{p}^{2}}\] …………………………………………… (1)
To proceed further in the solution we should know the formula given below,
Formula:
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
If we use the above formula in equation (1) we will get,
\[\therefore {{\left( \cos 25{}^\circ \right)}^{2}}+2\times \left( \cos 25{}^\circ \right)\times \left( \sin 25{}^\circ \right)+{{\left( \sin 25{}^\circ \right)}^{2}}={{p}^{2}}\]
By rearranging the above equation we will get,
\[\therefore {{\left( \cos 25{}^\circ \right)}^{2}}+{{\left( \sin 25{}^\circ \right)}^{2}}+2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\]
\[\therefore {{\cos }^{2}}25{}^\circ +{{\sin }^{2}}25{}^\circ +2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\] …………………………………….. (2)
To proceed further in the solution in the solution we should know the formula given below,
Formula:
\[{{\cos }^{2}}\theta {}^\circ +{{\sin }^{2}}\theta {}^\circ =1\]
If we use the above formula in equation (2) we will get,
\[\therefore 1+2\times \left( \sin 25{}^\circ \right)\times \left( \cos 25{}^\circ \right)={{p}^{2}}\]
To proceed further in the solution in the solution we should know the formula given below,
Formula:
\[2\times \sin \theta {}^\circ \times \cos \theta {}^\circ =\sin \left( 2\times \theta \right){}^\circ \]
By using above formula we will get,
\[\therefore 1+\sin \left( 2\times 25 \right){}^\circ ={{p}^{2}}\]
After multiplication we will get,
\[\therefore 1+\sin 50{}^\circ ={{p}^{2}}\]
If we shift ‘1’ on the right hand side of the equation we will get,
\[\therefore \sin 50{}^\circ ={{p}^{2}}-1\]
Now, to find the value of \[\cos 50{}^\circ \] we will square the above equation on the both sides so that we can use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] and simplify it.
\[\therefore {{\left( \sin 50{}^\circ \right)}^{2}}={{\left( {{p}^{2}}-1 \right)}^{2}}\]
By using the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] in the above equation we will get,
\[\therefore {{\sin }^{2}}50{}^\circ ={{\left( {{p}^{2}} \right)}^{2}}-2\times {{p}^{2}}\times 1+{{1}^{2}}\]
If we do further simplification in the solution we will get,
\[\therefore {{\sin }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\]
If we use the formula \[{{\sin }^{2}}\theta {}^\circ =1-{{\cos }^{2}}\theta {}^\circ \] in the above equation we will get,
\[\therefore 1-{{\cos }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\]
If we multiply the above equation by ‘-1’ we will get,
\[\therefore -1\times \left( 1-{{\cos }^{2}}50{}^\circ \right)=-1\times \left( {{p}^{4}}-2{{p}^{2}}+1 \right)\]
\[\therefore -1+{{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}-1\]
If we shift ‘-1’ on the right hand side of the equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}-1+1\]
\[\therefore {{\cos }^{2}}50{}^\circ =-{{p}^{4}}+2{{p}^{2}}\]
If we take \[{{p}^{2}}\] common from the above equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ ={{p}^{2}}\left( -{{p}^{2}}+2 \right)\]
By rearranging the above equation we will get,
\[\therefore {{\cos }^{2}}50{}^\circ ={{p}^{2}}\left( 2-{{p}^{2}} \right)\]
As we have to find the value of \[\cos 50{}^\circ \] therefore we will simply take the square roots on both sides of the equation, therefore we will get,
\[\therefore \sqrt{{{\cos }^{2}}50{}^\circ }=\sqrt{{{p}^{2}}\left( 2-{{p}^{2}} \right)}\]
As the square root of \[{{\cos }^{2}}50{}^\circ \] is \[\cos 50{}^\circ \] and he square root of \[{{p}^{2}}\]is p therefore the above equation will become,
\[\therefore \cos 50{}^\circ =p\sqrt{\left( 2-{{p}^{2}} \right)}\]
Therefore, if \[\cos 25{}^\circ +\sin 25{}^\circ =p\] the value of \[\cos 50{}^\circ \] is \[p\sqrt{\left( 2-{{p}^{2}} \right)}\].
Therefore the correct answer is option (c).
Note: You can solve the step \[1-{{\cos }^{2}}50{}^\circ ={{p}^{4}}-2{{p}^{2}}+1\] without multiplying it by ‘-1’ but then you have to be very careful about the signs.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

