
If $a{x^2} + bx + c = 0$ and $b{x^2} + cx + a = 0$ have a common root and $abc \ne 0$, then $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}} = $.
A.3
B.2
C.1
D.4
Answer
485.7k+ views
Hint- As this question is of the concept of finding the roots, so it should be known that the sum of the roots is given by $ - \dfrac{{{\text{coefficient}}\,{\text{of}}\,{\text{x}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$ and the product of roots is given by $ - \dfrac{{{\text{constant}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$, and the in this case sum of the roots in both the equation will be equal to each other and also the product of both the roots will equal for both the equations.
Complete step by step answer:
The given quadratic equations are $a{x^2} + bx + c = 0$ and $b{x^2} + cx + a = 0$.
We need to find the value of $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}}$.
Let,
$a{x^2} + bx + c = 0$ ………(i)
$b{x^2} + cx + a = 0$ …..….(ii)
Let $\alpha $ and $\beta $ be the roots common for the above equation.
The sum of the roots is given by $ - \dfrac{{{\text{coefficient}}\,{\text{of}}\,{\text{x}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$ and the product of roots is given by $ - \dfrac{{{\text{constant}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$.
Therefore,
For eq. (i), $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$.
For eq. (ii), $\alpha + \beta = \dfrac{{ - c}}{b}$ and $\alpha \beta = \dfrac{a}{b}$.
As both the roots are common, the sum and the product of the root will be equal for both the equations.
Therefore, it can be interpreted as follows:
\[\dfrac{{ - b}}{a} = \dfrac{{ - c}}{b} \Rightarrow {b^2} = ac\] …….(iii)
\[ \Rightarrow c = \dfrac{{{b^2}}}{a}\] ……(iv)
\[ \Rightarrow a = \dfrac{{{b^2}}}{c}\] ……(v)
Again,
\[\dfrac{c}{a} = \dfrac{a}{b} \Rightarrow {a^2} = bc\] ……(vi)
Now, use equation (iv) in equation (vi).
$
{a^2} = bc \\
{a^2} = b\left( {\dfrac{{{b^2}}}{a}} \right)\,\,\,\,\left[ {\because c = \dfrac{{{b^2}}}{a}} \right] \\
{a^2} = \dfrac{{{b^3}}}{a} \\
{a^2}\left( a \right) = {b^3} \\
{a^3} = {b^3} \\
$
Now, use equation (v) in equation (vi).
$
{a^2} = bc \\
{\left( {\dfrac{{{b^2}}}{c}} \right)^2} = bc\,\,\,\left[ {\because a = \dfrac{{{b^2}}}{c}} \right] \\
\dfrac{{{b^4}}}{{{c^2}}} = bc \\
\dfrac{{{b^4}}}{b} = c\left( {{c^2}} \right) \\
{b^3} = {c^3} \\
$
So, it can be observed that,
${a^3} = {b^3} = {c^3} \Rightarrow a = b = c$.
Now, use these values to find the value of $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}}$.
$\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}} = \dfrac{{{a^3} + {a^3} + {a^3}}}{{a \cdot a \cdot a}} = \dfrac{{3{a^3}}}{{{a^3}}} = 3$
So,option A is the right answer
Note- The standard form of any quadratic equation is, $a{x^2} + bx + c = 0$ here x is the variable and a, b and c are the constants and provided $a \ne 0$.
Here is the case of two quadratic having same roots and to solve the equation let it be equal to some constant: \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda \left( {{\text{say}}} \right)\].
Here, ${a_1}$ and ${a_2}$ are the coefficient of ${x^2}$, ${b_1}$ and ${b_2}$ are the coefficient of $x$ and ${c_1}$ and ${c_2}$ are the constants of the equation.
Complete step by step answer:
The given quadratic equations are $a{x^2} + bx + c = 0$ and $b{x^2} + cx + a = 0$.
We need to find the value of $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}}$.
Let,
$a{x^2} + bx + c = 0$ ………(i)
$b{x^2} + cx + a = 0$ …..….(ii)
Let $\alpha $ and $\beta $ be the roots common for the above equation.
The sum of the roots is given by $ - \dfrac{{{\text{coefficient}}\,{\text{of}}\,{\text{x}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$ and the product of roots is given by $ - \dfrac{{{\text{constant}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$.
Therefore,
For eq. (i), $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$.
For eq. (ii), $\alpha + \beta = \dfrac{{ - c}}{b}$ and $\alpha \beta = \dfrac{a}{b}$.
As both the roots are common, the sum and the product of the root will be equal for both the equations.
Therefore, it can be interpreted as follows:
\[\dfrac{{ - b}}{a} = \dfrac{{ - c}}{b} \Rightarrow {b^2} = ac\] …….(iii)
\[ \Rightarrow c = \dfrac{{{b^2}}}{a}\] ……(iv)
\[ \Rightarrow a = \dfrac{{{b^2}}}{c}\] ……(v)
Again,
\[\dfrac{c}{a} = \dfrac{a}{b} \Rightarrow {a^2} = bc\] ……(vi)
Now, use equation (iv) in equation (vi).
$
{a^2} = bc \\
{a^2} = b\left( {\dfrac{{{b^2}}}{a}} \right)\,\,\,\,\left[ {\because c = \dfrac{{{b^2}}}{a}} \right] \\
{a^2} = \dfrac{{{b^3}}}{a} \\
{a^2}\left( a \right) = {b^3} \\
{a^3} = {b^3} \\
$
Now, use equation (v) in equation (vi).
$
{a^2} = bc \\
{\left( {\dfrac{{{b^2}}}{c}} \right)^2} = bc\,\,\,\left[ {\because a = \dfrac{{{b^2}}}{c}} \right] \\
\dfrac{{{b^4}}}{{{c^2}}} = bc \\
\dfrac{{{b^4}}}{b} = c\left( {{c^2}} \right) \\
{b^3} = {c^3} \\
$
So, it can be observed that,
${a^3} = {b^3} = {c^3} \Rightarrow a = b = c$.
Now, use these values to find the value of $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}}$.
$\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}} = \dfrac{{{a^3} + {a^3} + {a^3}}}{{a \cdot a \cdot a}} = \dfrac{{3{a^3}}}{{{a^3}}} = 3$
So,option A is the right answer
Note- The standard form of any quadratic equation is, $a{x^2} + bx + c = 0$ here x is the variable and a, b and c are the constants and provided $a \ne 0$.
Here is the case of two quadratic having same roots and to solve the equation let it be equal to some constant: \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda \left( {{\text{say}}} \right)\].
Here, ${a_1}$ and ${a_2}$ are the coefficient of ${x^2}$, ${b_1}$ and ${b_2}$ are the coefficient of $x$ and ${c_1}$ and ${c_2}$ are the constants of the equation.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
What did the military generals do How did their attitude class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

For Frost what do fire and ice stand for Here are some class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
