
If $a{x^2} + bx + c = 0$ and $b{x^2} + cx + a = 0$ have a common root and $abc \ne 0$, then $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}} = $.
A.3
B.2
C.1
D.4
Answer
573.6k+ views
Hint- As this question is of the concept of finding the roots, so it should be known that the sum of the roots is given by $ - \dfrac{{{\text{coefficient}}\,{\text{of}}\,{\text{x}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$ and the product of roots is given by $ - \dfrac{{{\text{constant}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$, and the in this case sum of the roots in both the equation will be equal to each other and also the product of both the roots will equal for both the equations.
Complete step by step answer:
The given quadratic equations are $a{x^2} + bx + c = 0$ and $b{x^2} + cx + a = 0$.
We need to find the value of $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}}$.
Let,
$a{x^2} + bx + c = 0$ ………(i)
$b{x^2} + cx + a = 0$ …..….(ii)
Let $\alpha $ and $\beta $ be the roots common for the above equation.
The sum of the roots is given by $ - \dfrac{{{\text{coefficient}}\,{\text{of}}\,{\text{x}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$ and the product of roots is given by $ - \dfrac{{{\text{constant}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$.
Therefore,
For eq. (i), $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$.
For eq. (ii), $\alpha + \beta = \dfrac{{ - c}}{b}$ and $\alpha \beta = \dfrac{a}{b}$.
As both the roots are common, the sum and the product of the root will be equal for both the equations.
Therefore, it can be interpreted as follows:
\[\dfrac{{ - b}}{a} = \dfrac{{ - c}}{b} \Rightarrow {b^2} = ac\] …….(iii)
\[ \Rightarrow c = \dfrac{{{b^2}}}{a}\] ……(iv)
\[ \Rightarrow a = \dfrac{{{b^2}}}{c}\] ……(v)
Again,
\[\dfrac{c}{a} = \dfrac{a}{b} \Rightarrow {a^2} = bc\] ……(vi)
Now, use equation (iv) in equation (vi).
$
{a^2} = bc \\
{a^2} = b\left( {\dfrac{{{b^2}}}{a}} \right)\,\,\,\,\left[ {\because c = \dfrac{{{b^2}}}{a}} \right] \\
{a^2} = \dfrac{{{b^3}}}{a} \\
{a^2}\left( a \right) = {b^3} \\
{a^3} = {b^3} \\
$
Now, use equation (v) in equation (vi).
$
{a^2} = bc \\
{\left( {\dfrac{{{b^2}}}{c}} \right)^2} = bc\,\,\,\left[ {\because a = \dfrac{{{b^2}}}{c}} \right] \\
\dfrac{{{b^4}}}{{{c^2}}} = bc \\
\dfrac{{{b^4}}}{b} = c\left( {{c^2}} \right) \\
{b^3} = {c^3} \\
$
So, it can be observed that,
${a^3} = {b^3} = {c^3} \Rightarrow a = b = c$.
Now, use these values to find the value of $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}}$.
$\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}} = \dfrac{{{a^3} + {a^3} + {a^3}}}{{a \cdot a \cdot a}} = \dfrac{{3{a^3}}}{{{a^3}}} = 3$
So,option A is the right answer
Note- The standard form of any quadratic equation is, $a{x^2} + bx + c = 0$ here x is the variable and a, b and c are the constants and provided $a \ne 0$.
Here is the case of two quadratic having same roots and to solve the equation let it be equal to some constant: \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda \left( {{\text{say}}} \right)\].
Here, ${a_1}$ and ${a_2}$ are the coefficient of ${x^2}$, ${b_1}$ and ${b_2}$ are the coefficient of $x$ and ${c_1}$ and ${c_2}$ are the constants of the equation.
Complete step by step answer:
The given quadratic equations are $a{x^2} + bx + c = 0$ and $b{x^2} + cx + a = 0$.
We need to find the value of $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}}$.
Let,
$a{x^2} + bx + c = 0$ ………(i)
$b{x^2} + cx + a = 0$ …..….(ii)
Let $\alpha $ and $\beta $ be the roots common for the above equation.
The sum of the roots is given by $ - \dfrac{{{\text{coefficient}}\,{\text{of}}\,{\text{x}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$ and the product of roots is given by $ - \dfrac{{{\text{constant}}}}{{{\text{coefficient}}\,{\text{of}}\,{{\text{x}}^2}}}$.
Therefore,
For eq. (i), $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$.
For eq. (ii), $\alpha + \beta = \dfrac{{ - c}}{b}$ and $\alpha \beta = \dfrac{a}{b}$.
As both the roots are common, the sum and the product of the root will be equal for both the equations.
Therefore, it can be interpreted as follows:
\[\dfrac{{ - b}}{a} = \dfrac{{ - c}}{b} \Rightarrow {b^2} = ac\] …….(iii)
\[ \Rightarrow c = \dfrac{{{b^2}}}{a}\] ……(iv)
\[ \Rightarrow a = \dfrac{{{b^2}}}{c}\] ……(v)
Again,
\[\dfrac{c}{a} = \dfrac{a}{b} \Rightarrow {a^2} = bc\] ……(vi)
Now, use equation (iv) in equation (vi).
$
{a^2} = bc \\
{a^2} = b\left( {\dfrac{{{b^2}}}{a}} \right)\,\,\,\,\left[ {\because c = \dfrac{{{b^2}}}{a}} \right] \\
{a^2} = \dfrac{{{b^3}}}{a} \\
{a^2}\left( a \right) = {b^3} \\
{a^3} = {b^3} \\
$
Now, use equation (v) in equation (vi).
$
{a^2} = bc \\
{\left( {\dfrac{{{b^2}}}{c}} \right)^2} = bc\,\,\,\left[ {\because a = \dfrac{{{b^2}}}{c}} \right] \\
\dfrac{{{b^4}}}{{{c^2}}} = bc \\
\dfrac{{{b^4}}}{b} = c\left( {{c^2}} \right) \\
{b^3} = {c^3} \\
$
So, it can be observed that,
${a^3} = {b^3} = {c^3} \Rightarrow a = b = c$.
Now, use these values to find the value of $\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}}$.
$\dfrac{{{a^3} + {b^3} + {c^3}}}{{abc}} = \dfrac{{{a^3} + {a^3} + {a^3}}}{{a \cdot a \cdot a}} = \dfrac{{3{a^3}}}{{{a^3}}} = 3$
So,option A is the right answer
Note- The standard form of any quadratic equation is, $a{x^2} + bx + c = 0$ here x is the variable and a, b and c are the constants and provided $a \ne 0$.
Here is the case of two quadratic having same roots and to solve the equation let it be equal to some constant: \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda \left( {{\text{say}}} \right)\].
Here, ${a_1}$ and ${a_2}$ are the coefficient of ${x^2}$, ${b_1}$ and ${b_2}$ are the coefficient of $x$ and ${c_1}$ and ${c_2}$ are the constants of the equation.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

