
If $\alpha $is the nth root of unity, then $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$ is equal to:
(A) $ - \dfrac{n}{{{{\left( {1 - \alpha } \right)}^2}}}$ (B) $ - \dfrac{n}{{\left( {1 - \alpha } \right)}}$ (C) $ - \dfrac{{2n}}{{\left( {1 - \alpha } \right)}}$ (D) $ - \dfrac{{2n}}{{{{\left( {1 - \alpha } \right)}^2}}}$
Answer
597k+ views
Hint: Convert $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$ in to a geometric series, apply the formula for sum of terms of G.P. and use ${\alpha ^n} = 1$
According to the question, $\alpha $ is the nth root of unity. So, we have:
$ \Rightarrow {\alpha ^n} = 1$
The expression given in the question is $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$. Let it be $S$. Then we have:
\[
\Rightarrow S = 1 + 2\alpha + 3{\alpha ^2} + .....n{\alpha ^{n - 1}}{\text{,}} \\
\Rightarrow S\alpha = a + 2{\alpha ^2} + 3{\alpha ^3} + .....\left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}, \\
\Rightarrow S - S\alpha = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n}, \\
\Rightarrow S\left( {1 - \alpha } \right) = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n} \\
\]
We know that the sum of n terms of G.P. is $\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$, using this, we’ll get:
\[ \Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {{\alpha ^n} - 1} \right)}}{{\alpha - 1}} - n{a^n}\]
We also know that ${\alpha ^n} = 1$, putting its value, we’ll get:
\[
\Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {1 - 1} \right)}}{{\alpha - 1}} - n\left( 1 \right), \\
\Rightarrow S\left( {1 - \alpha } \right) = 0 - n, \\
\Rightarrow S = - \dfrac{n}{{\left( {1 - \alpha } \right)}} \\
\]
Substituting the value of $S$, we’ll get:
$ \Rightarrow 1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}} = - \dfrac{n}{{\left( {1 - \alpha } \right)}}$.
Thus, (B) is the correct option.
Note: If the G.P. consists of infinite terms then sum of its terms is:
$ \Rightarrow S = \dfrac{a}{{1 - r}}$, where r is the common ratio and a is the first term. But in such a case, for sum to be defined, the condition $0 < r < 1$ must hold.
According to the question, $\alpha $ is the nth root of unity. So, we have:
$ \Rightarrow {\alpha ^n} = 1$
The expression given in the question is $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$. Let it be $S$. Then we have:
\[
\Rightarrow S = 1 + 2\alpha + 3{\alpha ^2} + .....n{\alpha ^{n - 1}}{\text{,}} \\
\Rightarrow S\alpha = a + 2{\alpha ^2} + 3{\alpha ^3} + .....\left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}, \\
\Rightarrow S - S\alpha = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n}, \\
\Rightarrow S\left( {1 - \alpha } \right) = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n} \\
\]
We know that the sum of n terms of G.P. is $\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$, using this, we’ll get:
\[ \Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {{\alpha ^n} - 1} \right)}}{{\alpha - 1}} - n{a^n}\]
We also know that ${\alpha ^n} = 1$, putting its value, we’ll get:
\[
\Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {1 - 1} \right)}}{{\alpha - 1}} - n\left( 1 \right), \\
\Rightarrow S\left( {1 - \alpha } \right) = 0 - n, \\
\Rightarrow S = - \dfrac{n}{{\left( {1 - \alpha } \right)}} \\
\]
Substituting the value of $S$, we’ll get:
$ \Rightarrow 1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}} = - \dfrac{n}{{\left( {1 - \alpha } \right)}}$.
Thus, (B) is the correct option.
Note: If the G.P. consists of infinite terms then sum of its terms is:
$ \Rightarrow S = \dfrac{a}{{1 - r}}$, where r is the common ratio and a is the first term. But in such a case, for sum to be defined, the condition $0 < r < 1$ must hold.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

