# If $\alpha $is the nth root of unity, then $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$ is equal to:

(A) $ - \dfrac{n}{{{{\left( {1 - \alpha } \right)}^2}}}$ (B) $ - \dfrac{n}{{\left( {1 - \alpha } \right)}}$ (C) $ - \dfrac{{2n}}{{\left( {1 - \alpha } \right)}}$ (D) $ - \dfrac{{2n}}{{{{\left( {1 - \alpha } \right)}^2}}}$

Answer

Verified

364.2k+ views

Hint: Convert $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$ in to a geometric series, apply the formula for sum of terms of G.P. and use ${\alpha ^n} = 1$

According to the question, $\alpha $ is the nth root of unity. So, we have:

$ \Rightarrow {\alpha ^n} = 1$

The expression given in the question is $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$. Let it be $S$. Then we have:

\[

\Rightarrow S = 1 + 2\alpha + 3{\alpha ^2} + .....n{\alpha ^{n - 1}}{\text{,}} \\

\Rightarrow S\alpha = a + 2{\alpha ^2} + 3{\alpha ^3} + .....\left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}, \\

\Rightarrow S - S\alpha = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n}, \\

\Rightarrow S\left( {1 - \alpha } \right) = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n} \\

\]

We know that the sum of n terms of G.P. is $\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$, using this, we’ll get:

\[ \Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {{\alpha ^n} - 1} \right)}}{{\alpha - 1}} - n{a^n}\]

We also know that ${\alpha ^n} = 1$, putting its value, we’ll get:

\[

\Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {1 - 1} \right)}}{{\alpha - 1}} - n\left( 1 \right), \\

\Rightarrow S\left( {1 - \alpha } \right) = 0 - n, \\

\Rightarrow S = - \dfrac{n}{{\left( {1 - \alpha } \right)}} \\

\]

Substituting the value of $S$, we’ll get:

$ \Rightarrow 1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}} = - \dfrac{n}{{\left( {1 - \alpha } \right)}}$.

Thus, (B) is the correct option.

Note: If the G.P. consists of infinite terms then sum of its terms is:

$ \Rightarrow S = \dfrac{a}{{1 - r}}$, where r is the common ratio and a is the first term. But in such a case, for sum to be defined, the condition $0 < r < 1$ must hold.

According to the question, $\alpha $ is the nth root of unity. So, we have:

$ \Rightarrow {\alpha ^n} = 1$

The expression given in the question is $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$. Let it be $S$. Then we have:

\[

\Rightarrow S = 1 + 2\alpha + 3{\alpha ^2} + .....n{\alpha ^{n - 1}}{\text{,}} \\

\Rightarrow S\alpha = a + 2{\alpha ^2} + 3{\alpha ^3} + .....\left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}, \\

\Rightarrow S - S\alpha = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n}, \\

\Rightarrow S\left( {1 - \alpha } \right) = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n} \\

\]

We know that the sum of n terms of G.P. is $\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$, using this, we’ll get:

\[ \Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {{\alpha ^n} - 1} \right)}}{{\alpha - 1}} - n{a^n}\]

We also know that ${\alpha ^n} = 1$, putting its value, we’ll get:

\[

\Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {1 - 1} \right)}}{{\alpha - 1}} - n\left( 1 \right), \\

\Rightarrow S\left( {1 - \alpha } \right) = 0 - n, \\

\Rightarrow S = - \dfrac{n}{{\left( {1 - \alpha } \right)}} \\

\]

Substituting the value of $S$, we’ll get:

$ \Rightarrow 1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}} = - \dfrac{n}{{\left( {1 - \alpha } \right)}}$.

Thus, (B) is the correct option.

Note: If the G.P. consists of infinite terms then sum of its terms is:

$ \Rightarrow S = \dfrac{a}{{1 - r}}$, where r is the common ratio and a is the first term. But in such a case, for sum to be defined, the condition $0 < r < 1$ must hold.

Last updated date: 01st Oct 2023

•

Total views: 364.2k

•

Views today: 10.64k

Recently Updated Pages

What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE