Answer
Verified
493.2k+ views
Hint: Convert $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$ in to a geometric series, apply the formula for sum of terms of G.P. and use ${\alpha ^n} = 1$
According to the question, $\alpha $ is the nth root of unity. So, we have:
$ \Rightarrow {\alpha ^n} = 1$
The expression given in the question is $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$. Let it be $S$. Then we have:
\[
\Rightarrow S = 1 + 2\alpha + 3{\alpha ^2} + .....n{\alpha ^{n - 1}}{\text{,}} \\
\Rightarrow S\alpha = a + 2{\alpha ^2} + 3{\alpha ^3} + .....\left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}, \\
\Rightarrow S - S\alpha = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n}, \\
\Rightarrow S\left( {1 - \alpha } \right) = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n} \\
\]
We know that the sum of n terms of G.P. is $\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$, using this, we’ll get:
\[ \Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {{\alpha ^n} - 1} \right)}}{{\alpha - 1}} - n{a^n}\]
We also know that ${\alpha ^n} = 1$, putting its value, we’ll get:
\[
\Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {1 - 1} \right)}}{{\alpha - 1}} - n\left( 1 \right), \\
\Rightarrow S\left( {1 - \alpha } \right) = 0 - n, \\
\Rightarrow S = - \dfrac{n}{{\left( {1 - \alpha } \right)}} \\
\]
Substituting the value of $S$, we’ll get:
$ \Rightarrow 1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}} = - \dfrac{n}{{\left( {1 - \alpha } \right)}}$.
Thus, (B) is the correct option.
Note: If the G.P. consists of infinite terms then sum of its terms is:
$ \Rightarrow S = \dfrac{a}{{1 - r}}$, where r is the common ratio and a is the first term. But in such a case, for sum to be defined, the condition $0 < r < 1$ must hold.
According to the question, $\alpha $ is the nth root of unity. So, we have:
$ \Rightarrow {\alpha ^n} = 1$
The expression given in the question is $1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}}$. Let it be $S$. Then we have:
\[
\Rightarrow S = 1 + 2\alpha + 3{\alpha ^2} + .....n{\alpha ^{n - 1}}{\text{,}} \\
\Rightarrow S\alpha = a + 2{\alpha ^2} + 3{\alpha ^3} + .....\left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}, \\
\Rightarrow S - S\alpha = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n}, \\
\Rightarrow S\left( {1 - \alpha } \right) = 1 + a + {a^2} + .... + {a^{n - 1}} - n{a^n} \\
\]
We know that the sum of n terms of G.P. is $\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$, using this, we’ll get:
\[ \Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {{\alpha ^n} - 1} \right)}}{{\alpha - 1}} - n{a^n}\]
We also know that ${\alpha ^n} = 1$, putting its value, we’ll get:
\[
\Rightarrow S\left( {1 - \alpha } \right) = \dfrac{{1 \times \left( {1 - 1} \right)}}{{\alpha - 1}} - n\left( 1 \right), \\
\Rightarrow S\left( {1 - \alpha } \right) = 0 - n, \\
\Rightarrow S = - \dfrac{n}{{\left( {1 - \alpha } \right)}} \\
\]
Substituting the value of $S$, we’ll get:
$ \Rightarrow 1 + 2\alpha + 3{\alpha ^2} + .....{\text{to n terms}} = - \dfrac{n}{{\left( {1 - \alpha } \right)}}$.
Thus, (B) is the correct option.
Note: If the G.P. consists of infinite terms then sum of its terms is:
$ \Rightarrow S = \dfrac{a}{{1 - r}}$, where r is the common ratio and a is the first term. But in such a case, for sum to be defined, the condition $0 < r < 1$ must hold.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE