If $\alpha ,\beta $are the roots of the quadratic equation $a{x^2} + bx + c = 0$ and $3{b^2} = 16ac$ then:
A.$\alpha = 4\beta {\text{ or }}\beta = 4\alpha $
B.$\alpha = - 4\beta {\text{ or }}\beta = - \alpha $
C.$\alpha = 3\beta {\text{ or }}\beta = 3\alpha $
D.$\alpha = - 3\beta {\text{ or }}\beta = - 3\alpha $
Answer
328.8k+ views
Hint: Use the information that roots always satisfy the quadratic equation. Also, if quadratic equation is in the standard from, which is $l{x^2} + mx + n = 0$then sum of the roots $ = \dfrac{{ - m}}{l}$and multiplication of the roots $ = \dfrac{n}{l}$.
According to the given information in the hint, $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$. Then ${(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}}$ . we have given, $3{b^2} = 16ac$. On putting the value of ${b^2}$ we’ll get,
\[
{(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}} \Rightarrow {b^2} = {a^2}{(\alpha + \beta )^2} \\
3{b^2} = 16ac \\
\Rightarrow 3{a^2}{(\alpha + \beta )^2} = 16a \times a(\alpha \beta ){\text{ }}[{\text{Using, }}\alpha \beta = \dfrac{c}{a}] \\
\Rightarrow 3{a^2}({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16{a^2}\alpha \beta \\
\Rightarrow 3({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} + 3{\beta ^2} + 6\alpha \beta = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} - 10\alpha \beta + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - (9\beta + \beta )\alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - 9\beta \alpha - \beta \alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3\alpha (\alpha - 3\beta ) - \beta (\alpha - 3\beta ) = 0 \\
\Rightarrow (\alpha - 3\beta )(3\alpha - \beta ) = 0 \\
\Rightarrow \alpha = 3\beta ,\dfrac{\beta }{3} \\
\]
Hence, $\alpha = 3\beta $ and $\beta = 3\alpha $ are the correct set of equations. So, option C will be the correct option.
Note: While solving the question, be careful with the calculation part. Then only you’ll be able to solve the problem properly.
According to the given information in the hint, $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$. Then ${(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}}$ . we have given, $3{b^2} = 16ac$. On putting the value of ${b^2}$ we’ll get,
\[
{(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}} \Rightarrow {b^2} = {a^2}{(\alpha + \beta )^2} \\
3{b^2} = 16ac \\
\Rightarrow 3{a^2}{(\alpha + \beta )^2} = 16a \times a(\alpha \beta ){\text{ }}[{\text{Using, }}\alpha \beta = \dfrac{c}{a}] \\
\Rightarrow 3{a^2}({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16{a^2}\alpha \beta \\
\Rightarrow 3({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} + 3{\beta ^2} + 6\alpha \beta = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} - 10\alpha \beta + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - (9\beta + \beta )\alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - 9\beta \alpha - \beta \alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3\alpha (\alpha - 3\beta ) - \beta (\alpha - 3\beta ) = 0 \\
\Rightarrow (\alpha - 3\beta )(3\alpha - \beta ) = 0 \\
\Rightarrow \alpha = 3\beta ,\dfrac{\beta }{3} \\
\]
Hence, $\alpha = 3\beta $ and $\beta = 3\alpha $ are the correct set of equations. So, option C will be the correct option.
Note: While solving the question, be careful with the calculation part. Then only you’ll be able to solve the problem properly.
Last updated date: 06th Jun 2023
•
Total views: 328.8k
•
Views today: 8.85k
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
