
If $\alpha ,\beta $are the roots of the quadratic equation $a{x^2} + bx + c = 0$ and $3{b^2} = 16ac$ then:
A.$\alpha = 4\beta {\text{ or }}\beta = 4\alpha $
B.$\alpha = - 4\beta {\text{ or }}\beta = - \alpha $
C.$\alpha = 3\beta {\text{ or }}\beta = 3\alpha $
D.$\alpha = - 3\beta {\text{ or }}\beta = - 3\alpha $
Answer
621.6k+ views
Hint: Use the information that roots always satisfy the quadratic equation. Also, if quadratic equation is in the standard from, which is $l{x^2} + mx + n = 0$then sum of the roots $ = \dfrac{{ - m}}{l}$and multiplication of the roots $ = \dfrac{n}{l}$.
According to the given information in the hint, $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$. Then ${(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}}$ . we have given, $3{b^2} = 16ac$. On putting the value of ${b^2}$ we’ll get,
\[
{(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}} \Rightarrow {b^2} = {a^2}{(\alpha + \beta )^2} \\
3{b^2} = 16ac \\
\Rightarrow 3{a^2}{(\alpha + \beta )^2} = 16a \times a(\alpha \beta ){\text{ }}[{\text{Using, }}\alpha \beta = \dfrac{c}{a}] \\
\Rightarrow 3{a^2}({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16{a^2}\alpha \beta \\
\Rightarrow 3({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} + 3{\beta ^2} + 6\alpha \beta = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} - 10\alpha \beta + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - (9\beta + \beta )\alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - 9\beta \alpha - \beta \alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3\alpha (\alpha - 3\beta ) - \beta (\alpha - 3\beta ) = 0 \\
\Rightarrow (\alpha - 3\beta )(3\alpha - \beta ) = 0 \\
\Rightarrow \alpha = 3\beta ,\dfrac{\beta }{3} \\
\]
Hence, $\alpha = 3\beta $ and $\beta = 3\alpha $ are the correct set of equations. So, option C will be the correct option.
Note: While solving the question, be careful with the calculation part. Then only you’ll be able to solve the problem properly.
According to the given information in the hint, $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$. Then ${(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}}$ . we have given, $3{b^2} = 16ac$. On putting the value of ${b^2}$ we’ll get,
\[
{(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}} \Rightarrow {b^2} = {a^2}{(\alpha + \beta )^2} \\
3{b^2} = 16ac \\
\Rightarrow 3{a^2}{(\alpha + \beta )^2} = 16a \times a(\alpha \beta ){\text{ }}[{\text{Using, }}\alpha \beta = \dfrac{c}{a}] \\
\Rightarrow 3{a^2}({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16{a^2}\alpha \beta \\
\Rightarrow 3({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} + 3{\beta ^2} + 6\alpha \beta = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} - 10\alpha \beta + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - (9\beta + \beta )\alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - 9\beta \alpha - \beta \alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3\alpha (\alpha - 3\beta ) - \beta (\alpha - 3\beta ) = 0 \\
\Rightarrow (\alpha - 3\beta )(3\alpha - \beta ) = 0 \\
\Rightarrow \alpha = 3\beta ,\dfrac{\beta }{3} \\
\]
Hence, $\alpha = 3\beta $ and $\beta = 3\alpha $ are the correct set of equations. So, option C will be the correct option.
Note: While solving the question, be careful with the calculation part. Then only you’ll be able to solve the problem properly.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

