Answer
Verified
492.3k+ views
Hint: Use the information that roots always satisfy the quadratic equation. Also, if quadratic equation is in the standard from, which is $l{x^2} + mx + n = 0$then sum of the roots $ = \dfrac{{ - m}}{l}$and multiplication of the roots $ = \dfrac{n}{l}$.
According to the given information in the hint, $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$. Then ${(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}}$ . we have given, $3{b^2} = 16ac$. On putting the value of ${b^2}$ we’ll get,
\[
{(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}} \Rightarrow {b^2} = {a^2}{(\alpha + \beta )^2} \\
3{b^2} = 16ac \\
\Rightarrow 3{a^2}{(\alpha + \beta )^2} = 16a \times a(\alpha \beta ){\text{ }}[{\text{Using, }}\alpha \beta = \dfrac{c}{a}] \\
\Rightarrow 3{a^2}({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16{a^2}\alpha \beta \\
\Rightarrow 3({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} + 3{\beta ^2} + 6\alpha \beta = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} - 10\alpha \beta + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - (9\beta + \beta )\alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - 9\beta \alpha - \beta \alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3\alpha (\alpha - 3\beta ) - \beta (\alpha - 3\beta ) = 0 \\
\Rightarrow (\alpha - 3\beta )(3\alpha - \beta ) = 0 \\
\Rightarrow \alpha = 3\beta ,\dfrac{\beta }{3} \\
\]
Hence, $\alpha = 3\beta $ and $\beta = 3\alpha $ are the correct set of equations. So, option C will be the correct option.
Note: While solving the question, be careful with the calculation part. Then only you’ll be able to solve the problem properly.
According to the given information in the hint, $\alpha + \beta = \dfrac{{ - b}}{a}$ and $\alpha \beta = \dfrac{c}{a}$. Then ${(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}}$ . we have given, $3{b^2} = 16ac$. On putting the value of ${b^2}$ we’ll get,
\[
{(\alpha + \beta )^2} = \dfrac{{{b^2}}}{{{a^2}}} \Rightarrow {b^2} = {a^2}{(\alpha + \beta )^2} \\
3{b^2} = 16ac \\
\Rightarrow 3{a^2}{(\alpha + \beta )^2} = 16a \times a(\alpha \beta ){\text{ }}[{\text{Using, }}\alpha \beta = \dfrac{c}{a}] \\
\Rightarrow 3{a^2}({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16{a^2}\alpha \beta \\
\Rightarrow 3({\alpha ^2} + {\beta ^2} + 2\alpha \beta ) = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} + 3{\beta ^2} + 6\alpha \beta = 16\alpha \beta \\
\Rightarrow 3{\alpha ^2} - 10\alpha \beta + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - (9\beta + \beta )\alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3{\alpha ^2} - 9\beta \alpha - \beta \alpha + 3{\beta ^2} = 0 \\
\Rightarrow 3\alpha (\alpha - 3\beta ) - \beta (\alpha - 3\beta ) = 0 \\
\Rightarrow (\alpha - 3\beta )(3\alpha - \beta ) = 0 \\
\Rightarrow \alpha = 3\beta ,\dfrac{\beta }{3} \\
\]
Hence, $\alpha = 3\beta $ and $\beta = 3\alpha $ are the correct set of equations. So, option C will be the correct option.
Note: While solving the question, be careful with the calculation part. Then only you’ll be able to solve the problem properly.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths